=

l Hardware Verification
with SystemVerilog

An Object-Oriented Framework

Mike Mintz
Robert Ekendahl

@ Springer

Hardware Verification with
SystemVerilog

An Object-Oriented Framework

Mike Mintz
Robert Ekendahl

Hardware Verification with
SystemVerilog

An Object-Oriented Framework

Cover art from the original painting “Dimentia #10” by John E.
Bannon, johnebannon.com

@ Springer

Mike Mintz Robert Ekendahl
Harvard, MA Somerville, MA
USA USA

Library of Congress Control Number: 2007923923

ISBN 0-387-71738-2 e-ISBN 0-387-71740-4
ISBN 978-0-387-71738-8 e-ISBN 978-0-387-71740-1

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

987654321

springer.com

For Joan, Alan, and Brian.
Thanks again for your patience.

Mike

For Chantal.
Thanks again for your understanding,
love, and active support.

And to Newton—and now Darwin.
For many more missed walks.

Robert

vi e 0000 00 Hardware Verification with SystemVerilog

Contents

Preface. Xix
Acknowledgments., Xxi
Chapter 1: Introduction 1
Background e e 3
What is Functional Verification?. 4
Why Focus on SystemVerilog? 5
A Tour of theHandbook 5
For FurtherReading 6

Part I:
SystemVerilog and Verification
(TheWhyandHow).................... 7
Chapter 2: Why SystemVerilog? 9
Overview.o i e 10
SystemVerilog as a Verification Language 11
Main Benefits of Using SystemVerilog 13
Drawbacks of Using SystemVerilog 13
SystemVerilog Traps and Pitfalls 14
SystemVerilogisnot Verilog 14
Errors and run-timecrashes 15

Hardware Verification with SystemVerilog: An Object-Oriented Framework vii

Contents

viii

Five languagesinone! 15
The assertions language. 15
The constraint language. 16
The coverage language 18
SystemVerilog features not discussed 19
SUMMaAry. . .ot e e e 20
For FurtherReading 20
Chapter 3: OOP and SystemVerilog
Overview.o i e 24
The Evolution of OOP and SystemVerilog. 25
Assembly programming: The early days. 25
Procedural languages: The next big step......... 25
OOP: Inheritance for functionality 26
OOP: Inheritance for interface 28
A word or two about “interface” 28
The Evolution of Functional Verification 29
Verification through inspection 29
Verification through randomness 29
The emergence of
hardware verification languages 30
OOP: A current trend in verification. 31
OOP: A possiblenextstep 31
OOP and SystemVerilog 32
Data abstraction through classes 32
A DMA descriptorexample 32
Accesscontrol 33
Constructorst 34
Member methods and variables. 35
Inheritance for functionality. 36
Inheritance for code interface. 37
What’sa headerfile?. 39
Packages.t e 40

Separating HDL and testbenchcode 42

Wiggling wires: the interface concept. 42

Building and using interfaces 44
SUMMaArY. . .o e e e 46
For FurtherReading 46

Chapter 4: A Layered Approach 47
Overview.o i e 48
A Whiteboard Drawing 50

An “ends-in” approach. 51

Refining the whiteboard blocks 52
The “Common-Currency” Components 52
The Component LayerinDetail 53

The connection layer. 54

Theagentlayer 56

The transaction layer 57
The Top-Layer Componentsc..... 58
WhatisaTest?. 60
The TestComponent 62
The Testlrritator, 64
ACompleteTest. 65
SUMMaArY. . .ot e e 67
For FurtherReading 67

Part Il:

An Open-Source Environment with SystemVerilog69

Chapter 5: Teal Basicsccvivivenennn 71
Overview.o i e 72
Teal’s Main Components.c..... 72
Using Teal i ittt 74

Asimpletest 74
Logging Qutput.o i ittt ittt i 74
Using Test Parameters. 77
AccessingMemory. it e 79

An Object-Oriented Framework

Contents

Amemoryexample.......... ..., 80
Constrained Random Numbers. 84
Required initialization. 84
Using randomnumbers. 85
Working with Simulation Events. 86
SUMMaAry. . .ot e e e 87

Chapter 6: Truss: A Standard Verification

Frameworkciiiiiiiiiiinneennnnnns
Overview.ot e e 90
General Considerations 91

SystemVerilog considerations 91
Keepingitsimple 92
Major Classes and TheirRoles 93
Key test algorithm: The “dance” 94
The verification_component Virtual Base Class. 97
Detailed Responsibilities
of the Major Components 98
The testbenchclass. 99
Watchdog timer 101
Testclasst 102
Test Component and Irritator Classes 106
The test component virtual baseclass 106
AnAHBexample. 108
Test-component housekeeping functionality 109
The irritator virtual baseclass 110
Using theirritator. 112
SUMMaAIY . & v vt ettt e et e e e ettt e e 113

Chapter 7: Truss Flow...........ciivu.
Overview. i e e 116
About truss_verification_top.sv................ 116
The Test ComponentDance 119
The lrritatorDance 121
Compiling and Running Tests. 122

The trussrunscript. 123
Switches. e 124
Using “-f”"files. o i, 125

The First Test: ADirected Test 125

The Second Test:

Adding Channels and Random Parameters 127
The channel pseudo-templated classes 128
Building the second test. 129
Building the second test’s test_component 131
Adjusting the second test’s parameters 132

The Remaining Tests:

Mix-and-Match Test Components 135

SUMMaArY . . .ot e e 136

Chapter 8: Truss Example
Overview. . . .o it i e e 138
Directory Structure 138
Theory of Operation 140
Running the Simple ALU Example. 142
Pointsof Interest 142
Power-onReset 143
Driver and Monitor Protocol 144
The alu_test_component 145
Checkingthe Chip. 146
Completingthe Test 147
SUMMaAIY . vt ettt e e e e e e ettt e e ennn 149

An Object-Oriented Framework

xi

Contents

xii

Part Ill:
Using OOP for Verification
(Best Practices).o v it i e i i
Chapter 9: Thinking OOP
Overview.o i e 154
Sources of Complexity, 155
Essential complexity vs.
implementation complexity 155
Flexibility vs. complexity 156
Apparent simplicity vs.
hiding inherent complexity. 159
Example: How hiding complexity
can create confusion. 159
Example: How apparent simplicity
leads to laterproblems 160
Teamdynamicscuieiveeeennnn. 162
Teamrolesttt 162
Using a “codebuddy” 163
Creating AdaptableCode 163
Achieving adaptability, 163
Why is adaptability tricky? 164
Architectural Considerations
to Maximize Adaptability 165
Changes are easy—or just plain impossible. 166
Where is adaptation likely to happen? 167
Separating Interface from Implementation 168
Code Interface, Implementation, and Base Classes . . .169
SUMMAIY . & v vt ettt e e e e e ettt ieee e e 170
For FurtherReading 171

Chapter 10: Designing with OOP 173

Overview. i e e 174
Keeping the Abstraction Level Consistent 174
Using “Correct by Construction” 176
The Value of Packages 178
Data Duplication—A Necessary Evil. 180
Designing Well, Optimizing Only When Necessary181
Using the Protocol, Only the Protocol. 182
Verification Close to the Programming Model. 183
The Three Parts of Checking. 184
Separating the Test from the Testbench 186
SUMMaAIY . v e ettt e et e e e ettt e enan 187
For FurtherReading 188
Chapter 11: OOP Classescieuuuu.n 189
Overview. i e e 190
Defining Classes o v ittt ii i 191
How Much Electricity? 191
Classes . v v vttt e e e e e e e e e 192
Packages.ttt i e 192
Pointers and virtual functions 192
Global Services. e 193
Packageitup!, 193
Staticmethods., 194
Singletons—A Special Case of Static Methods 194
Packages or static methods? 195
Other considerations 196
Class Instance Identifiers 197
Strings as identifiers 197
Static integers as identifiers. 197
Combination identifiers 198
Class Inheritance forReuse. 198
A BFM base-classexample 199

An Object-Oriented Framework xiii

Contents

ABFMagentclass...........o ... 200
Reusingthe BFMclass 200
Class Inheritance for Code Interfaces 201
Inheritance for a verification component 201
Inheritance for a payload code interface. 202
SUMMaAry. . .ot e e e 203
For FurtherReading 204
Chapter 12: OOP Connections
Overview.o i e e 206
How Tight a Connection? 207
Types of Connections. 209
Peer-to-peer connections. 209
Master-to-slave and push-vs.-pull connections 209
Two Tight Connection Techniques 211
Usingpointerst eeennn 211
Using inheritance 212
Threads and Connections 214
Events—explicit blocking interconnects. 214
Hiding the thread block inamethod 216
Fancier Connections 217
Listener or callback connections 218
Channel connections 219
Action object connections 220
SUMMaAIY . & v vt ettt e e e e e ettt e e e e 221
For FurtherReading 222

xiv

Chapter 13: Coding OOP

Overview. i e e
“If” Tests—A Necessary Evil
“If” tests and abstractionlevels
“If” tests and code structure
Repeated “if” expressions
“If” tests and factory functions.
A factory functionexample
Coding Tricks v i i it e it e e e e e e e
Coding only what youneedtoknow
Reservableresources.
The register: an int by any othername..........
Using data members carefully.
CodingIldioms.
The singletonidiom.

Public nonvirtual methods:
Virtual protectedmethods

Enumeration for Data, Integer for Code Interface. . . .
What’sinaName?
Keeping class name the same as filename
Keeping class and instance names related
CodingwithStyle,
Proceeding withcaution.
General syntax conventions
Identifying local and protected members
SUMMAIY . & et ettt e e e e ettt e e
For FurtherReading

An Object-Oriented Framework

241

XV

Contents

Part IV:
Examples
(Putting It All Together).................
Chapter 14: Block-Level Testing
Overview.ot e 250
Theory of Operation 251
Verification environment 252
Verification IP 253
UARTVIPS e e e e 253
Wishbone VIP. i 254
The verificationdance. 255
Running the UART Example. 255
Pointsof Interest 256
Configuration. 256
VIPUART package., 257
VIP UART configurationclass. 258
Randomization of parameters. 258
UART 16550 configurationclass. 260
Configuringthe Chip 261
Registeraccess. v v i ittt i e e 262
The wishbone_memory_bank and
wishbone_driver. oo L. 263
Traffic Generation 265
The generator_agent and uart_bfm_agent classes. . .265
TheChecker 267
Checkingthedata. 268
Connecting It All Together 270
Thetestbench 270
Building the channels 271
Building the configuration and interface port. 271
Building the component-layer objects 273
The wishbone objects 274
The testcomponent 275

Xvi

The uart_basic_test_component::do_randomize()

method. 277
The basicdatatest....................... 278
More Tests. i i it it i i i e 280
SUMMaAIY. . . e e e e e e e e et ettt ee e e 280
Chapter 15: Chip-Level Testing 281
Overview.ot e e 282
Theory of Operation 282
Verification environment 283
Running the UART Example. 284
The quad_uart_test_components Test 284
The quad_uart_irritators Test 286
UART irritatorclass. oo 286
Thetest i 288
The quad_uart_vectors Test 292
The block_uart Test 293
SUMMANY . . et et e e e e e e ettt e e 293
Chapter 16: Things to Remember.......... 295
Part I: Use SystemVerilog and Layers!. 296
Part Il: An Open-Source Approach 296
Part Ill: OOP—Best Practices 297
Part IV: Examples—Copy and Adapt! 298
Conclusion to the Conclusion. 298
Index i e e e e 301

An Object-Oriented Framework xvii

Xviiie o o o o o o Hardware Verification with SystemVerilog

Preface

This is the second of our books designed to help the professional verifier
manage complexity. This time, we have responded to a growing interest not
only in object-oriented programming but also in SystemVerilog. The writing
of this second handbook has been just another step in an ongoing masochistic
endeavor to make your professional lives as painfree as possible.

The authors are not special people. We have worked in several companies,
large and small, made mistakes, and generally muddled through our work.
There are many people in the industry who are smarter than we are, and many
coworkers who are more experienced. However, we have a strong desire to
help.

We have been in the lab when we bring up the chips fresh from the fab, with
customers and sales breathing down our necks. We’ve been through software
bring-up and worked on drivers that had to work around bugs1 in production
chips.

What we feel makes us unique is our combined broad experience from both
the software and hardware worlds. Mike has over 20 years of experience from
the software world that he applies in this book to hardware verification.
Robert has over 12 years of experience with hardware verification, with a
focus on environments and methodology.

What we bring to the task of functional verification is over three decades of
combined experience, from design, verification, software development, and
management. It is our experiences that speak in this handbook. It is our desire
that others might learn and benefit from these experiences.

We have had heated discussions over each line of code in this book and in
our open-source libraries. We rarely agree at first, but by having to argue our
cases we arrive at what we feel are smart, efficient, flexible, and simple
solutions. Most of these we have “borrowed” from the software industry but
have applied to the field of verification.

We believe that the verification industry can benefit from the lessons learned
from the software domain. By using industry-standard languages, the verifi-
cation domain can adapt techniques and code from over twenty calendar years

I Features.

An Object-Oriented Framework Xix

XX

of software effort, the scope of which is nothing short of stunning. Many
brilliant people have paved the way in the software field. Although the
field of verification is much younger, we could benefit greatly from
listening, learning, and adapting mature programming techniques to the
production of products of the highest quality.

So why do we provide open-source software at our website,
www.trusster.com? Open-source software is a key to uniting and increas-
ing the productivity of our industry. There is almost no successful closed-
source (“hard macro”) intellectual property (IP), for a good reason.
Without the ability to look at the source and edit as necessary, the task
is much more difficult and the chances for success are slim.

We hope that you enjoy this book—and better yet, find its principles
increasingly useful in daily practice. We look forward to your comments.
Please keep in touch with us at www.trusster.com.

Mike Mintz

Robert Ekendahl

Cambridge, Massachusetts, USA
March 2007

Acknowledgments

Acknowledgments

It takes a village to raise a child, and it takes a village to create a book. There
is a core family, and a few relatives, and a whole lot of helpful neighbors and
friends. Once again, the authors would like to bow humbly to our village—
in particular, to the global verification village.

This, our second book, shares many of the same reviewers and adds some
new ones. They provided great comments on almost every chapter, both
detailed and “big picture,” helping to improve many sections substantially.

Michael Meyer was once again our main technical editor, turning our gib-
berish into English and making clear where we were unclear. This book would
not have been readable without him.

We are truly grateful for all the reviewers, their time, and their suggestions
during both the early and near final stages of the book. In particular, we thank
Ed Arthur, Oswaldo Cadenas, Jesse Craig, Simon Curry, Thomas Franco,
John Hoglund, Mark Goodnature, Tom Jones, James Keithan, Ajeetha
Kumari, David Long, Bryan Morris, Nancy Pratt, Joe Pizzi, Dave Rich, Henrik
Scheuer, Chris Spear, Peter Teng, Thomas Tessier, Greg Tierney, Igor
Tsapenko, Gerry Ventura, Stephanie Waters, and Andrew Zoneball.

We are also grateful for the support and encouragement of the producers of
the HDL simulators. In particular, we thank the following simulator compa-
nies—Cadence, Mentor Graphics, and Synopsys—for providing licenses to
their products, so we could confirm that the examples in this handbook work.

An Object-Oriented Framework XXi

XXii o o o o o o o Hardware Verification with SystemVerilog

Part I:
SystemVerilog and
Verification

(The Why and How)

This part of the handbook explores the use of SystemVerilog for
verification and then look at the benefits and drawbacks of using Sys-
temVerilog. In the next chapter we take a brief tour of the features of
SystemVerilog.

Next, we weave three different themes together: the evolution of pro-
gramming in general, the creation of object-oriented programming (OOP)
techniques, and the evolution of functional verification. The reason we
chose to look at these three themes is to show why OOP exists and how
it can be harnessed to benefit verification.

A major theme of this handbook is to build a verification system in layers.
OOP techniques are well-suited to this approach. In the last chapter of
this section, we’ll look at a canonical verification system by using a
standard approach to building verification components.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 7

Introduction

Coding is a human endeavor. Forget that and
all is lost.

Bjarne Stroustrup, father of C++

There are several books about hardware verification, so what makes
this book different? Put simply, this book is meant to be useful in your
day-to-day work—which is why we refer to it throughout as a handbook.
The authors are like you, cube dwellers, with battle scars from developing
chips. We must cope with impossible schedules, a shortage of people to
do the work, and constantly mutating hardware specifications.

We subtitled this book An Object-Oriented Framework because a major
theme of the book is how to use object-oriented programming (OOP) to
do verification well. We focus on real-world examples, bloopers, and
code snippets. Sure, we talk about programming theory, but the theme
of this book is how to write simpler, adaptable, reusable code. We focus
mainly on OOP techniques because we feel that this is the best way to
manage the ever-increasing complexity of verification. We back this up
with open-source Verification Intellectual Property (VIP), several com-
plete test systems, and scripts to run them.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 1

Chapter 1: Introduction

We cover the following topics:

SystemVerilog as a verification language
A tour of the features and real-world facts about SystemVerilog

How to use OOP to build a flexible and adaptable verification
system

How to use specific OOP techniques to make verification code
both simpler and more adaptable, with reference to actual
situations (both good and bad) that the authors have encountered

Useful SystemVerilog code, both as snippets, complete examples,
and code libraries—all available as open source

This handbook is divided into four major sections:

Part I provides an overview of OOP concepts, then walks through
the transformation of a block-level view of a typical verification
system into code and classes.

Part II describes two free, open-source code libraries that can
serve as a basis for a verification system—or as inspiration for
your own environment. The first, called Teal, is a set of utility
classes and functions. The second, called Truss, is a complete
verification system framework. Both are available as open source
and are available at www.trusster.com.

Part I1I describes how to use OOP to make your team as
productive as possible, how to communicate design intent better,
and how to benefit from “lessons learned” in the software world.

Part IV describes several complete real-world examples that
illustrate the techniques described in the earlier parts of this book.
In these examples we build complete verification environments
with makefiles, scripts, and tests. These examples can serve as
starting points for your own environment.

For the curious, each of the chapters in Part I and Part III ends with a

section called “For Further Reading,” which recommends relevant land-

mark papers and books from both the hardware and software domains.

1

I The references in these sections, though not academically rigorous, should be
sufficient to help you find the most recent versions of these works on the
Internet.

Background

Background

The silicon revolution! has made computers, cell phones, wireless net-
works, and portable MP3 players not only ubiquitous but in a constant
state of evolution. However, the major impediment to introducing new
hardware is no longer the hardware design phase itself, but the verifica-
tion of it.

Costs of $1M or more and delays of three to six months for new hardware
revisions of a large and complex application-specific integrated circuits
(ASICs) are common, providing plenty of incentive to get it right the
first time. Even with field-programmable gate arrays (FPGAs), upgrades
are costly, and debugging an FPGA in the lab is very complex for all but
the simplest designs.

For these reasons, functional verification has emerged as a team effort
to ensure that a chip or system works as intended. However, functional
verification means different things to different people. At the 30,000-
foot level, we write specifications, make schedules, and write test plans.
Mainly, though, we code. This handbook focuses on the coding part.

White papers are published almost daily to document some new verifi-
cation technique. Most of you probably have several papers on your desk
that you want to read. Well, now you can throw away those papers! This
handbook compresses the last ten years of verification techniques into a
few hundred pages. Of course, we don’t actually cover that decade in
detail (after all, this is not a history book), but we have picked the best
techniques we found that actually worked, and reduced them to short
paragraphs and examples.

Because of this compression, we cover a wide variety of topics. The
handbook’s sections range from talking about SystemVerilog, to intro-
ducing OOP, to using OOP at a fairly sophisticated level.

L Moore’s law of 1965 is still largely relevant. See “Cramming more components
onto integrated circuits,” by Gordon Moore, Electronics, Volume 38, Number
8, April 19, 1965.

An Object-Oriented Framework 3

Chapter 1: Introduction

What is Functional Verification?

Asking “what is functional verification?” brings to mind the familiar
poster, “A View of the World from Ninth Avenue,”1
of New York City are predominant and everything beyond is tiny and

in which the streets

insignificant. Every one of us has a different perspective, all of which
are, of course, “correct.” Put simply, functional verification entails build-
ing and running software to make sure that a device under test (DUT, or
in layman’s terms, the chip) operates as intended—before it is mass-
produced and shipped.

We perform a whole range of tasks where the end goal is to create a high
degree of confidence in the functionality of the chip. Mostly we try to
find errors of logic, by subjecting the chip to a wide variety of conditions,
including error cases (where we validate graceful error handling and
ensure that the chip at least does not “lock up”). We also make sure that
the chip meets performance goals, and functions in uncommon combi-
nations of parameters (“corner cases”), and confirm that the chip’s
features—such as the register, interrupt, and memory-map interfaces—
work as specified.

As with the view of New York City, the perspectives of every company,
indeed even of the design and test teams within a company, will naturally
be slightly different. Nevertheless, as long as the chip works as a product,
there are a number of ways to achieve success. That’s why this handbook
does not focus on what the specific tasks are; you know what you have
to do. Rather, we focus on how you can write your code as effectively
as possible, to alleviate the inevitable pain of verification.

. Saul Steinberg, cover of The New Yorker, March 29, 1976.

Why Focus on SystemVerilog?

Why Focus on SystemVerilog?

A major development in the field of functional verification is the increas-
ingly mainstream use of OOP techniques. Basically, those of us in the
verification field need those techniques to handle increasingly complex
tasks effectively. While most of the techniques presented in this handbook
are adaptable to any number of languages such as Vera or C++, we focus
on SystemVerilog—the marriage of the Verilog programming language
with OOP.

At its core, OOP is designed to manage complexity. All other things
being equal, simpler code is better. Because of the flexibility inherent in
using OOP, we can write code that is simpler to use, and therefore more
adaptable. In short, we can write reusable code that outlives its initial use.

This handbook is all about providing techniques, guidelines, and exam-
ples for using SystemVerilog in verification, allowing you to make more
use of some “lessons learned” by software programmers. We distill the
important bits of knowledge and techniques from the software world,
and present them in the light of verification.

A Tour of the Handbook

The four parts of this handbook provide a variety of programming tips
and techniques.

m Part I walks through the main concepts of OOP, introducing how
to transform your high-level “whiteboard” idea for a verification
system into separate roles and responsibilities. The goal is to
build appropriately simple and adaptable verification systems.

] Part II uses these techniques and presents two open-source code
libraries for verification, called Teal and Truss. Teal is a utility
package that is lightweight and framework agnostic. Truss is a
verification framework that encourages the use of the canonical
form described in Part I. Both are used by several companies and
run under most simulators.

An Object-Oriented Framework 5

Chapter 1: Introduction

Part 111 introduces the OOP landscape in a fair amount of detail.
OOP thinking, design, and coding are illustrated by means of code
snippets representative of problems that verification engineers
commonly have to solve.

Part IV provides several complete examples of verification test
systems, providing real-world examples and more details on how
the OOP techniques discussed are actually used. Part IV is all
about code. While a handbook may not be the best vehicle for
describing code, it can be a good reference tool. We show a
relatively simple example of how the verification of a single block
of the ubiquitous UART! can be done. Then we show how this
block-level environment can be expanded to a larger system.

The authors sincerely hope that, by reading this handbook, you will find

useful ideas, techniques, and examples that you can use in your day-to-

day verification coding efforts.

For Further Reading

On the topic of coding well, Writing Solid Code, by Steve
McGuire, is a good tour of the lessons Microsoft has learned.

Principles of Functional Verification, by Andreas Meyer, provides
an introduction to the broad topic of chip verification.

Writing Testbenches: Functional Verification of HDL Models,
Second Edition, by Janick Bergeron, gives another view of the
process of functional verification.

I Universal asynchronous receiver-transmitter.

Why
SystemVerilog?

C H A PTEUR 2

If you want to do buzzword-oriented
programming, you must use a strongly
hyped language.

Mike Johns

We, in the functional verification trade, write code for a living. Well,
we do that, and also puzzle over code that has been written and that has
yet to be written. Because functional verification is a task that only gets
more complex as designs become more complex, the language we work
in determines how well we can cope with this increasing complexity.

The authors believe that SystemVerilog is an appropriate choice for
functional verification, but as with any choice, there are trade-offs. This
chapter discusses the advantages and disadvantages of using System Ver-
ilog for functional verification. We’ll look at the following topics:

m An abbreviated comparison of the languages and libraries
available for functional verification

m Why SystemVerilog is an appropriate choice for verification

Hardware Verification with SystemVerilog: An Object-Oriented Framework 9

Chapter 2: Why SystemVerilog?

Overview

10

m The disadvantages of using SystemVerilog

Coding for functional verification can be separated into two parts. One
is the generic programming part, and the other is the chip testing part.
The generic part includes writing structures, functions, and interactions,
using techniques such as OOP to manage complexity. The chip testing
partincludes connecting to the chip, running many threads, and managing
random variables.

The generic programming part becomes more and more crucial as the
complexity of the hardware to be tested grows. While the problem of
connecting to a more complex chip tends to grow only linearly, the overall
problem of dealing with this increased complexity grows exponentially.

The authors believe the generic part of programming is served reasonably
by SystemVerilog. The language’s features and expressive capabilities
make it usable for functional verification. As will be discussed in detail
in later sections, the downside is that the language is immature, and
compliance from one simulator to the next is inconsistent.

While SystemVerilog might be a little rough around the edges, it is a
good way for those who are mainly hardware oriented to learn OOP. As
with Verilog, threading is built in, and connection to the chip is relatively
well thought out. Realize though, that the actual percentage of code
devoted to these tasks is small.

These tasks of HDL connection and parallel execution generally increase
linearly with the complexity of the chip. In other words, there are more
wires to connect, more independent threads to run, more variables to
constrain, and so on.

By contrast, it is much more difficult to make the complexity of a chip
increase only linearly. So, as a verification system gets bigger, things
tend to get out of hand quickly. Our ability to understand a complex
verification system is often more important than how we actually connect
to the hardware description language (HDL) wires.

SystemVerilog as a Verification Language

So this handbook concentrates on the “How to make the code reasonable”
part of programming. Sure, our examples are multithreaded and use
virtual interfaces,1 but the bulk of this handbook is about how to write
understandable code.

SystemVerilog as a Verification Language

Several attempts have been made to move verification away from HDLs,
such as Verilog or VHDL.? An HDL does a good job of spanning design
concepts (called the register transfer level, or RTL) down to a few
primitives that are used in great numbers to implement a design (called
the gate level). However, HDLs are not adept at “moving up” in abstrac-
tion level to handle modern programming techniques. HDLs are con-
cerned with creating silicon, not with programming. Specifically, HDLs
do not provide for object-oriented concepts.

SystemVerilog makes a step in this direction, and can be used to verify
a chip. However, it is not clear that such a large span of concepts as
SystemVerilog tries to cover can be integrated well into a single language.
This handbook provides advice and examples that the authors believe
will maximize the programming features of the language, while mini-

mizing the “clunky” parts.

Not surprisingly, there are many choices and trade-offs when you choose
a verification language. The table on the following page briefly lists the
pros and cons of various languages suitable for verification.

I We talk about virtual interfaces in the next chapter, but for now just know that
they are the way to connect HDL wires with testbench OOP code.
2. VHSIC (Very High-Speed Integrated Circuit) HDL.

An Object-Oriented Framework 11

Chapter 2: Why SystemVerilog?

12

Language

Verilog, VHDL

Pros

Simple, no extra license
required

Cons

No class concept, no
separation of verification
and chip concerns

Cadence Specman

W

e

Rich feature set

Effectively proprietary,
nonorthogonal language
design

OpenVera

0O0P—“like”, better feature
set than HDL

Effectively proprietary,
interpreted, lacking full OOP
support

SystemVerilog

IEEE standard, OOP features,
one simulator does HDL and
HVL, C interface

Covers all aspects from gates
to OOP, implementation
compliance is weak,
language is large, yet lacking
full OOP support

SystemC (C++)

Mature language, open
source, most often does not
need a simulator

Big footprint, focus is on
modeling, heavy use of
templating, coverage and
constraint system dominates
coding, long compile times,
clumsy connection to HDL

Teal/Truss
(C++ form)

Mature language, good use of
C++, open source, few
source files

Not a product, no inherent
automatic garbage collection

Homegrown PLI/C

Free, well known

Not usually multithreaded,
usually called from HDL as a
utility function

As we stress repeatedly through this handbook, the team
must decide what features of which languages to use, and
how. This handbook will show how best to use SystemVerilog’s

OOP features.

Main Benefits of Using SystemVerilog

Main Benefits of Using SystemVerilog

A major benefit of SystemVerilog is that it provides a relatively painless
introduction to OOP, allowing you to use as little or much of OOP as you
feel comfortable with. To this end, SystemVerilog allows the concept of
“code interface” versus “implementation,” allowing someone reusing
code to concentrate on the features the code provides, not on how the
code is actually implemented.

SystemVerilog is well-marketed, with several books and experts. (A
quick web search for “SystemVerilog” yielded over 365,000 references.)
The language is a good stepping stone from Verilog to OOP, reusing a
fair amount of the Verilog syntax.

Furthermore, SystemVerilog vendors are developing useful debugging
tools, and because SystemVerilog can coexist with Verilog and VHDL,
existing HDL code can be integrated easily.

Many companies have behavioral c-models of their core algorithms. For
models with a simple integral interface, the DPI' can be used to run the
code in SystemVerilog. Note that the current compliance and feature set
are spotty, so be prepared that you may have to rewrite the code in
SystemVerilog.

SystemVerilog allows a clean separation between HDL and OOP con-
cerns. As will be explained further in the next chapter, the use of the
virtual interface feature, along with new keywords such as class
and local, can be used to support the OOP concerns.

Drawbacks of Using SystemVerilog

While there are many benefits to using SystemVerilog, there are naturally
drawbacks as in any language. One drawback is that, by itself, System-
Verilog is not a solution. Even with the open-source verification libraries
of Teal and Truss, you have to write code in a new language.

I Direct Programming Interface—SystemVerilog’s API for connecting to C, and
by extension to C++.

An Object-Oriented Framework 13

Chapter 2: Why SystemVerilog?

Another drawback, ironically, is that SystemVerilog is a rich language—
with the “dangerous” power that this implies. There are many features
and even sublanguages. Figuring out which subset to use is a daunting
task.

Consequently, it can take time to learn how to use SystemVerilog effec-
tively, even with the help of good FAE! teams from EDA? companies
giving presentations on the language and their design methodology. You
will have to find your own techniques within SystemVerilog. This, by
the way, is not necessarily a bad thing.

The purpose of this handbook is to lessen the effects of these drawbacks—
by providing proven OOP techniques from the software world, and by
illustrating, through real examples, how they are applicable to functional
verification.

SystemVerilog Traps and Pitfalls

This section of the handbook will probably be the most controversial.
We will talk about the current state of the SystemVerilog language.

We do not advocate using every feature in the language. Perhaps, over
time, the benefits of the features will bear out. But because this language
is immature, there are some areas where caution is advised.

SystemVerilog is not Verilog

14

Realize that SystemVerilog and Verilog are two separate languages.
While there is movement within the language committees to join the two
languages together, this will happen in 2008 at the earliest. Why does
this affect you? SystemVerilog has, for the most part, Verilog behavior
(and its warts), but there are differences.

For example, the SystemVerilog language reserves new keywords that
are likely to make your Verilog code fail to compile. Fortunately, simu-
lator vendors provide a way to tag files as either Verilog or SystemVerilog.

I Field applications engineer.
2. Electronic design automation.

SystemVerilog Traps and Pitfalls

Errors and run-time crashes

When you code in a new language, there will be syntax and run-time
errors. The majority of the time the compiler will be correct. However,
remember that the language is young and the compliance is evolving, so
do not spend a large amount of time debugging. Do not be shy about
calling your local FAE. To be more clear, the authors and the FAEs are
on a first-name basis.

Five languages in one!

As you start to learn SystemVerilog, it becomes clear that several lan-
guages are melded into one. SystemVerilog includes a synthesizable
subset, an assertions language, a constraint language, a coverage lan-
guage, and an OOP language. Whew!

Each of these sublanguages has its own syntax, semantics, and features,
with a limited sharing of idioms. Because this handbook is focused on
OOP for verification, we will discuss only the SystemVerilog OOP
sublanguage.

With the exception of the synthesizable subset and OOP, these other
features have not been proven universally necessary. They might work
great for specific situations but not for most others. In the next sections,
we present arguments why they may not withstand the test of time.

The assertions language

The authors have used assertions for years. Well, to be clear, we have
used nontemporal assertions. These are simple boolean expressions that
must be true, otherwise the simulation ends. The following is an example:

assert (request && grant);

This use is fairly straightforward. However, as soon as time is involved,
the assertions can become quite complex, approaching the impenetrable.1

sequence gABC; a ##1 b ##[0:5] c; endsequence : gABC
property pEnded; not (gABC.ended); endproperty : pEnded

I This example is from a forum on www.verificationguild.com.

An Object-Oriented Framework 15

Chapter 2: Why SystemVerilog?

first match (gA23B).pEnded) [-> c;

The mental effort required to understand such constructs is large. The
mental effort to write such constructs is an order of magnitude larger.
This means that only a few engineers are able to create assertions. The
authors have worked in languages where the complexity of the language
created a “priesthood,” where only the anointed could understand the
actual meaning of the code. While this might create a sense of job security
for the priests, it is never good for accuracy and efficiency, because it
stops discussions about the code.

In addition, often the assertion-writing effort itself is equal to—or
exceeds—the actual design-coding effort. While it’s true that formal
tools! can then be used, the effort required can be large compared to the
payoff. This was tried in the software domain, complete with formal
program proofs, but such proofs are no longer used.

Temporal assertions are complicated to write and
understand. Make sure that the HDL complexity requires
their use.

The constraint language

16

In verification, randomization is essential. Unfortunately, it can be dif-
ficult to control the parameters that manage the randomization. (This
topic is discussed in detail in later chapters.) It certainly is not clear that
we, as an industry, understand enough about managing randomization to
have a “best” solution. The random-number management solution used
in SystemVerilog includes a constraint language. It is unclear to the
authors that this is a benefit. Sure, at some level we have to constrain
random numbers to a range (or disjoint ranges), and possibly skew the
distribution so that it is nonuniform. However, adding a declarative
sublanguage within a procedural verification language is not an obvious
win. The declarative language may look deceptively procedural. In addi-
tion to requiring the verifier to learn an HVL, the application of hierar-
chical and overlapping constraints is not intuitive.

I Yes, commercial assertion libraries for standard protocols—when available—
can sometimes be useful, but beware: writing your own can be tricky!

SystemVerilog Traps and Pitfalls

For example, in one company we used the recommended method of
extending a class to add constraints. This is “obvious” in theory, but in
a real system one often cannot find, or keep in mind, all the classes and
their subclasses. We kept adding constraints that conflicted at run time,
and other testers added constraints to a class that many people were
already using—even though the added constraints were applicable to
only a single test. Finally, we decided that all constraints were to be local

to a class, and not in the inherited classes.!

There are two techniques the authors have used successfully to perform
constraints. One technique uses procedural code to set up min/max
variables for constraining the random variable, and the other uses a
forward declaration on a constraint. The first technique will be used in
the examples, and so is not discussed further here. For the forward
declaration technique, we declare a constraint test, without a body, in
every class that has random behavior.

class ethernet packet;

///method and data declarations

int packet size;

constraint test; //no implementation in this class
endclass

class usb generator;

int device id;

constraint test; //no implementation in this class

endclass

Then in the actual test case, we implement the specific class’s test
constraint that we need.

//in test <some test name>.sv we now define constraints
constraint ethernet packet::test { packet size == 218;}
constraint usb generator::test {device id == 4;}

//the rest of the test code

This allows each test case to have “knobs,” to control the code as
appropriate.

I Don’t worry if these terms are a bit confusing in this paragraph. They will be
explained in the next chapter.

An Object-Oriented Framework 17

Chapter 2: Why SystemVerilog?

Use constraints sparingly, either as a min/ max bounds or as
an unimplemented constraint that a test may use.

The coverage language

18

In addition to using constraints to guide the randomization, System Ver-
ilog adds a coverage sublanguage. While coverage is a good idea in theory
and is a well-marketed concept, the authors are not certain that the
industry has a clear need for it as implemented. It is a relatively simple
matter to collect data, but many questions remain:

] Do you keep the time at which the coverage event occurred?

m How do you fold a large coverage range (such as an integer or a
real) into coverage bins?

m What is the relationship between the covered events and the
constraints that control the randomization?

These points show the difficulty in using coverage. They are inherent
issues with functional coverage, as contrasted with line, toggle or expres-
sion coverage. Since humans define what the function of a chip is, humans
need to define the coverage of these functions. In other words, it can
never be simpler than defining what the chip does, which is not an easy
task.

There is one more question:

m Will your company delay the chip tape-out or FPGA! delivery if
coverage goals are not met?

This last question is critical. Be honest in your assessment. After many
years of working on chip projects, it’s our honest assessment that most
companies would be fiscally delinquent if a product were delayed because
of the possibility of some bugs.2 The factis that acompany needs revenue,
and the chip should have been tested adequately for basic market features
at least—assuming the verification team is reasonably competent. If the
team isn’t, your company has more pressing problems to deal with.

One final point: It’s common for software drivers to have to work around
major deficiencies in a chip, as well to work around minor deficiencies

L Field-programmable gate array.
2 Now of course, there are exceptions. The medical and space industry come to
mind.

SystemVerilog Traps and Pitfalls

in many chips. If the chip runs and even performs a subset of the features
adequately, your company will sell it and make revenue.

So why use coverage at all? Coverage is good for your configuration
parameters. There are modes, such as baud_rate, data_width, and so
on, that are set once and then used throughout the test run. By looking
at coverage data, you can see that your basic data-flow tests are properly
walking the configuration space of the chip.

Use coverage in SystemVerilog as part of your basic data-flow
tests, but be careful: This coverage does not necessarily

increase the productivity of your team. Write directed tests
(without coverage) for specific cases and data-flow patterns.

SystemVerilog features not discussed

SystemVerilog has many features, some of which are essentially vendor-
specific. Other features are just not universally implemented or well
thought out. In this section we’ll enumerate some of these features.

Within SystemVerilog, templating in the OOP sublanguage is like using
parameters in HDL. While an interesting feature, the vendor support for
templating is weak and real-world proofs are even weaker. Templating
makes SystemVerilog OOP code more complex, and does not map to
C++ templating, which is well-proven.

The bind construct is a fairly loose part of the specification at present.
It is also primarily used to connect SystemVerilog assertions to the
synthesizable subset, so it is not a focus for verification coders. It is also
a declarative construct, making it inappropriate for run-time configura-
tions.

There are many more minor features of SystemVerilog, such as wild
equality, the ref concept, clocking blocks on interfaces, and new
datatypes such as byte, shortreal, int union, enum, and string.
Searching through the SystemVerilog specification for terms such as
“SystemVerilog adds” and “SystemVerilog introduces” will produce a
fairly complete list. Because this handbook is concerned primarily with
OOP and SystemVerilog, we will not discuss these features further here.

An Object-Oriented Framework 19

Chapter 2: Why SystemVerilog?

Summary

This chapter made the case for using SystemVerilog as a verification
language. We took a quick look at some other options and then enumer-
ated why SystemVerilog was appropriate.

The main point of this chapter is that SystemVerilog is a relatively easy
path from Verilog to OOP.

Because SystemVerilog is a new and evolving language, we spent a fair
amount of time presenting notes of caution. We also took note of spe-
cialized and new features that are not in the mainstream of OOP.

For Further Reading

20

m Software Engineering: A Practitioner's Approach, by Roger S.
Pressman, has a great section on the evolution of programming.
This handbook also has references to landmark papers and books.

m The SystemC and Testbuilder manuals have discussions on why
C++ is good for verification. SystemC information can be found
at www.systemc.org, and Testbuilder information can be found at
www.testbuilder.net.

] Teal and Truss were initially documented in the authors’ other
book, “Hardware Verification with C++:A Practitioner’s
Approach. The current version of the source code for C++ and
SystemVerilog is available on www.trusster.com.

] There are several standards for verification and simulation, such
as 1800 for SystemVerilog, IEEE 1364-1999 (for VHDL), IEEE
1995-2001 (for Verilog), IEEE 1076, and IEEE 1647 (for the
IEEE version of Cadence Specman “e”). The website
www.openvera.org provides the OpenVera specification.

] There are a growing number of books devoted to coding in
SystemVerilog. One book that the authors have used is
SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, by Chris Spear. It is a good look at most of
SystemVerilog’s features. (Note that this book is specific to
Synopsys, so caveat emptor.)

For Further Reading

m If you want to learn more about SystemVerilog assertions,
consider the SystemVerilog Assertions Handbook by Ben Cohen,
Srinivasan Venkataramanan, and Ajeetha Kumari.

u If you want a detailed look at the evolution of the SystemVerilog
language, sign up for the SystemVerilog Testbench Extension
Committee mailing list, at http://eda.org/sv-ec.

u Stuart Sutherland has a great paper (from SNUG! Boston 2006)
titled “Standard Gotchas: Subtleties in Verilog and SystemVerilog
That Every Engineer Should Know,” available at http://
www.sutherland.com/papers.html.

I Synopsis Users Group.

An Object-Oriented Framework 21

22 e e 0o 0 0 0 0 Hardware Verification with SystemVerilog

OOP and
SystemVerilog

C H AP TER 3

Progress has not followed a straight
ascending line, but a spiral with rhythms of
progress and retrogression, of evolution and
dissolution.

Johann Wolfgang von Goethe

The idea of progress in the art and science of verification seems simple
enough —until you look at how progress is made. It is rarely a single
person, technique, or language that moves us forward to simpler code,
while handling ever more-complex chips. Rather, it is a swinging, jump-
ing roller-coaster that we are on. OOP is just another of those twists and
turns along the ride of progress.

This chapter looks at why and how object-oriented programming was
developed, and reflects on why OOP is the right choice for managing the
increasing complexity of verification. It then shows how OOP is
expressed in SystemVerilog. The OOP techniques shown in this chapter
are used throughout the remainder of this handbook.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 23

Chapter 3: OOP and SystemVerilog

Overview

24

OOP is a programming technique that is often touted as a cure-all for
verification. While it is true that OOP is an essential tool in a program-
mer’s toolbox, itis by no means the mostimportant one. One’s experience,
intelligence, and team environment are far more important to the success
of verification than any language feature or technique. That said, OOP
is a useful tool for communicating and enforcing design intent for large
projects and teams, in addition to being a good way to build adaptable,
maintainable, and reusable code.

This handbook is intended for those having at least some familiarity with
the concept of OOP. Many verification engineers already have some
experience with OOP through languages such as C++, Vera, Specman
“e,” or SystemC.

The first part of this chapter looks at the history of OOP and why it is
well-suited to functional verification. The second part shows how Sys-
temVerilog expresses the most common elements of OOP.

For readers with limited experience in OOP, there are a few suggestions
at the end of this chapter. If you have at least some experience with OOP,
or if some time has passed since you used it last, then don’t worry!

Some of the aspects presented in this and subsequent chapters might
seem confusing at first, but Part II of this handbook shows a complete
working verification environment. It is the authors’ hope and intent that
you will “copy and paste” from this environment as well as from the
examples provided.1 This handbook is designed to give you a jump start
on using SystemVerilog without having to design every class from
scratch.

The “basic” OOP techniques expressed in this chapter are important, and
form the basis of the fancier techniques in Part III of the handbook.

I Code is freely available at www.trusster.com.

The Evolution of OOP and SystemVerilog

The Evolution of OOP and SystemVerilog

OOP techniques have been proven to help large programming teams
handle code complexity. One key to coping with such complexity is the
ability to express the intent of the code, thus allowing individual pro-
grammers to develop their part of the code more effectively. This under-
standing of intent allows programmers to build upon already working
code, and to understand the overall structure more easily.

Assembly programming: The early days

Programming has changed a lot over the years. It started with the use of
assembly 1anguage1 as a way to express a “simple” shorthand notation
for the underlying machine language. This simple abstraction allowed
programmers to focus on the problem at hand, instead of on the menial
and error-prone task of writing each instruction as a hexadecimal or octal
integer. Simply put, abstraction allowed an individual programmer to
become more productive.

Here is an example of some assembly language:

MOV.W R3, #100

MOV.L R1, #7865DB
loop: ADDQ.W R1, #4

TST.W R1, R2

BNZ loop

Procedural languages: The next big step

With the increase in complexity of the problems programmers were asked
to handle, procedural languages such as FORTRAN,2 C, and Pascal were
developed. These procedural languages became very popular and allowed
individual programmers to become highly productive.

Here is an example of FORTRAN,? a common procedural language:

I The first assembly language was created by Grace Hopper in 1948.

2- For FORmula TRANGslator, created by John W. Backus in 1952.

3. Okay, you got us—this is actually FORTRAN 77, the “new” FORTRAN (ANSI
X3.9, 1978).

An Object-Oriented Framework 25

Chapter 3: OOP and SystemVerilog

DO 3, LOoop =1, 10

READ *, MGRADE, AVERAGE

IF (.NOT. (AVERAGE .GT. 6.0 E —1)) THEN
PRINT *, 'Failing average of ', AVERAGE
STOP

ELSE
PRINT *, 'Passing average of', AVERAGE
AVERAGE = (MGRADE / 1 E 2) + AVERAGE

END IF

3 CONTINUE

Interestingly, as the size of the programs grew, the focus of programming
switched from the productivity of the individual to the productivity of
the larger team. It was found that procedural languages were not well-
suited to large programming efforts, because communicating the intent
of the code was difficult. OOP, with its ability to build classes upon
classes and define interfaces, proved an effective response to this prob-
lem.

OOP: Inheritance for functionality

By necessity, OOP developed in stages. The first stage focused on what
is often called data hiding or data abstraction. This is a way to organize
large amounts of code into more manageable pieces. With large amounts
of procedural code, it became very complicated to keep track of all
structures and the procedures that could operate on those structures. It
was also hard to expand, in an organized way, upon existing code without
directly editing the code—a process that, as we all know, is error prone.

To address these problems, a language called Simula was developed in
1967. This language is recognized as the first language to introduce
object-oriented concepts.

SystemVerilog has this lineage, with ways to organize data structures
and the functions that operate on those structures. This organizational
concept is called a class (loosely based on Simula’s class). The tasks and
functions, now scoped within a class, are called methods. In addition,
SystemVerilog included ways for one class to expand upon another
through inheritance (also from Simula).

26

The Evolution of OOP and SystemVerilog

The very essence of OOP is the ability to specify similarities
and differences in code constructs relatively easily.

Classes allowed for the grouping of code with data, while inheritance
allowed a way to express increasingly intricate functionality through the
reuse of smaller working modules. This technique is often called inher-
itance for functionality. (Later in this chapter, we’ll show how System-
Verilog expresses both of these features—grouping into classes and reuse
through inheritance—in more detail.) This new approach was sort of like
the Industrial Revolution of the programming world, increasing team
productivity by an order of magnitude.

Classes helped improve the productivity of programming teams by orga-
nizing the code in layers—with one layer inheriting from, and enhancing
upon, a lower layer. This meant that the code could now be “reasoned
about.” With “reasonable” code, changes and bug fixes could be made
only to the appropriate lines, without the changes echoing, or propagating
undesirably, throughout all of the code.

Furthermore, as code was structured into layers through hierarchy trees,
several patterns became visible. For example, it became clear that certain
layers were not involved with manipulating the data (in the classes)
directly, but rather with ordering, structuring, and tracking events.

These framework layers became more and more important to understand-
ing the system. To get a large program to be “reasonable,” more and more
standard infrastructure was needed. These framework layers had no
“interest” in how the actual data were manipulated; rather, the important
feature was that now the data could be assumed to be manipulated in
predefined ways.

As an example, as long as each class in a particular framework layer had
astart () orarandomization () function, working with classes of that
type was reasonable. As these framework layers were written, it became
clear that they could be generalized as long as each class followed the
rules for that type of “component.”

An Object-Oriented Framework 27

Chapter 3: OOP and SystemVerilog

OOP: Inheritance for interface

So how to get a class to “follow the rules” of a framework component?
What is needed is a language-enforced way to express the rules that a
class had to follow in order to “fit in.” The solution, known as virtual-
ization, is included in SystemVerilog. With virtualization one could
define classes called virtual base classes; these simply express the code
interface to which a component must conform, in order to fit into the

larger system.

Each developer of the actual classes that fit in a particular structure would
then inherit from this virtual base class, and implement the details for
how a particular function should be implemented for the problem at hand.
This technique of defining the code interface through virtualization, often
called inheritance for interface, is frequently used in OOP-based
projects.

The clever thing is that now one could write the code for the framework
layer using virtual base classes. This not only allowed the framework to
be implemented concurrently with the data-based classes, but it also
allowed the framework layer to be developed in a much more generic
way. This virtualization of base classes has proven to be a powerful
technique for creating and maintaining large and complex systems.

A word or two about “interface”

28

It is unfortunate that SystemVerilog has a keyword called interface.
This is because “interface” is a common term in OOP for expressing the
class items (data and methods) with which a user is concerned. This is
also called the public part of a class, but interface is a more wide-spread
term. We will talk more about the SystemVerilog interface at the end
of this chapter.

So, in this handbook, we will mostly use the phrase “code interface” to
refer to the public code of a class, and use interface (in that weird code
font) to indicate the SystemVerilog keyword. When we feel the context
is sufficient, we may omit the distinction here and there.

The Evolution of Functional Verification

The Evolution of Functional Verification

Verification through inspection

There are similarities with the development of OOP and that of functional
verification, and while hardware verification is a younger field than
software programming, it has (not surprisingly) followed a similar path.

As readers of this handbook surely know, functional verification has
come a long way from its recent humble beginning as a (mostly manual)
process of verifying simulation waveforms. From there, it evolved into
“golden” files; a current simulation run was compared to a known-to-be-
good result file—the golden file. For this technique to work it required
fixed stimuli, often provided in simple text format. Golden files were an
acceptable technique for small designs, where the complete design could
be tested exhaustively through a few simulation runs.

Verification through randomness

The simple technique of using golden files became impossible to use as
the size of the hardware being tested grew both in size and complexity,
so other techniques were needed. For larger projects it was no longer
possible to test the “state space” of a chip completely. To do so would
require an unobtainable amount of computer time, even on the fastest
machines. To address the reality that the chips being developed could no
longer be tested exhaustively, random testing was introduced. Using
randomness in tests changes the input stimuli every time a test is run.
The goal is to cover as much of the state space as possible through ongoing
regression runs.

Unfortunately, several problems were found in using randomness with
current hardware description languages (such as Verilog or VHDL). To
begin with, the result checking became more complex as golden files
could no longer be used (because the input stimuli changed for each run).
This meant that verification models that could predict the outcome from
any set of input stimuli were needed. Writing these models has become
a major task for the verification projects of today.

An Object-Oriented Framework 29

Chapter 3: OOP and SystemVerilog

However, this technique also posed other problems. It was discovered
that using randomness was a tricky thing. If you use random stimuli and
your testing fails because of a hardware bug, then you later would want
to rerun the exact same sequence of stimuli to verify that the bug has
been solved. This is more easily said than done.

You can record all the stimuli that generated the test run, then use some
mechanism to replay the stimuli later; alternatively, you can track the
“seed” from which the (pseudo) random generator starts and then pass
that number into your next simulation run.

Both techniques can be problematic, because storing all the generated
stimuli requires a lot of disk space and directory infrastructure, and
because controlling randomness through a seed requires good control
over your “random” generator.

The current most common solution to this problem is to control and store
the “random” seed, then use it to replay a given stimuli sequence over
and over.

The emergence of
hardware verification languages

30

We can see that controlling the generation of random stimuli requires
many things. We need verification models that can predict results from
any given set of stimuli. We also need control over how the random
generator works, to be able to replay a given stimuli sequence. It was
found thatusing HDL languages, such as Verilog and VHDL, was difficult
with respect both to writing high-level models quickly and controlling
randomness. In Verilog, for example, it was not obvious how to control
the random seed back in 1987.

As a result, people started looking at other languages for verification.
The natural first step was connecting C to Verilog, but soon languages
such as “e” and Vera were introduced. These languages made it easier
to do random testing, in turn making it possible to test much larger chips.

The Evolution of Functional Verification

OOP: A current trend in verification

The problems we are facing today in verification are similar to the
problems software faced when OOP was adopted. We now have to deal
with very large amounts of code and multitudes of modules, all of which
must be compiled, instantiated, controlled, randomized, and run. This is
not an easy task, and we spend more and more time solving these basic
framework problems. Specman “e” and Vera were early and proprietary
entries in OOP-enabled hardware verification languages (HVLs). Sys-
temVerilog is the latest entry, and promises a multivendor descendency.

It seems clear that adopting OOP techniques should help make these
problems more manageable. Unfortunately, there are still not enough
people in the field of verification who have sufficient experience and
understanding of how to develop an appropriate OOP infrastructure.

Engineers in our field are just starting to adopt OOP techniques. The
main reason for this book is to show verification techniques through
“OO0P glasses.”

OOP: A possible next step

The field of verification is young; not long ago we were staring at
waveforms on a screen. By using modern verification languages we have
developed the field into something better. However, today we are facing
even harder problems, one of which is the issue of the framework. To do
a job that is increasingly complex, we need a framework for how our
verification environment is interconnected. This is no longer an easy
thing to achieve. In this handbook we show many techniques for how to
manage this and other problems. We also introduce an open-source
verification framework, called Truss, which collects our best experience
in OOP into a working environment.

It is our belief that if enough people adopt a powerful open-source
infrastructure, many great innovations will result. The problem we face
today cannot be solved by the features of individual languages alone;
rather, we need an agreed-upon framework. Even if this framework were
modified by each team, it still provides the opportunity for best practices
to evolve. This handbook, and the associated open-source code, is our
attempt to start the discussion.

An Object-Oriented Framework 31

Chapter 3: OOP and SystemVerilog

However, we are getting ahead of ourselves, so before we dive into the
practical problem of verification, let’s look at how SystemVerilog
expresses OOP techniques.

OOP and SystemVerilog

This section shows how SystemVerilog expresses the OOP concepts
described above. It describes some of the techniques we use to build a
successful verification environment in later chapters. For engineers expe-
rienced with other OOP languages such as C++, Vera or “e,” this chapter
can serve as a way to map concepts from one language to another.

Data abstraction through classes

32

Using classes to express data abstraction is an important technique in
building large verification systems. Data abstraction, by grouping the
data and the operations together, allows engineers to reason about the
code.

We will look at a direct memory access (DMA) descriptor class to show
how a class can be constructed, then evolved by means of inheritance.

A DMA descriptor example

DMA is a common hardware feature for transferring data from one
memory location to another without putting a load on the CPU. In this
example, we verify a DMA chip that accepts DMA descriptors, puts them
into an on-chip memory array, and then executes them. Each descriptor
has a source and destination memory address, as well as the number of
bytes (called “length”) to transfer.

In the verification environment, a DMA descriptor could be represented
by a small class. The DMA generator is then responsible for building,
or instantiating, DMA descriptors and “pushing” them to the chip and
to the checker.

OOP and SystemVerilog

The following code describes the DMA descriptor class:

class descriptor;
//Constructor
extern function new (int src, int dest,

int length, int status);

//Code (or Public) Interface:
extern virtual function void print();
int source address ; //public as an example!
extern virtual function bit equal (descriptor d);
//Implementation (or local and protected) interface:
extern local virtual function int unique id ();
protected int destination address ;
protected int length ;
protected int status ;
protected int verif id ;

endclass

The descriptor class is divided into the code (or public) interface and the
implementation (or local and protected) interface, as shown by the access
control level on each line. The next section will explain what access
control labels are for.

Access control

The keywords protected and local, as used in the descriptor class,
are SystemVerilog access control labels. They indicate how methods and
variables following the statements can be used. The absence of a label
indicates that the methods and variables that follow are publicly acces-
sible by any code that has access to an instance of the class.! A local
label indicates that only the code inside the class itself can access the

variable or method.

The keyword protected indicates a private variable or method that can
be modified through inheritance. Public, local, and protected can be used
to express and enforce the intent of the class quite clearly.

I This is an unfortunate default, as a vast majority of classes will have far fewer
public methods and variables compared to the local and protected code used to
implement the class. Be prepared to type “local” and “protected” a lot.

An Object-Oriented Framework 33

Chapter 3: OOP and SystemVerilog

34

Access control is needed to help separate the user or code interface from
both the internal methods and the data needed to implement the class.
Consequently, the public section of a class declaration is the “code
interface.” These are the interesting methods and variables to look at
when you want to use a new class. When you implement a class, on the
other hand, you also need a space to store the “state” of your class between
method calls. This is done in local or protected scope.

Implementing a class is similar to implementing a state machine, where
each method call changes the state of the state machine (that is, modifies
the data members of the class). This “change of state” must be recorded
somehow. Variables for tracking the state as well as intermediate methods
should be put in the local scope, not only to indicate to users that they
shouldn’t focus on these methods and variables, but also to protect these
variables from accidentally being modified. When a class is instantiated,
only the public methods and calls can be accessed. Trying to access local
scope results in an error during compilation. This is an example of how
language enforces the “intent” of the class.

Enforcing intent can (and should) go beyond protecting state variables.
For example, instead of printing an error message during run-time, when
the code calls internal implementation-detail methods, one should
declare those methods to be in local scope, so that a compile error occurs
instead.!

Constructors

When a class is instantiated, the special function new () is called. This
special function is the constructor. A constructor is used to initialize
member variables, reserve memory, and initialize the class.

So how do you actually create an instance of a class? Consider our
descriptor class for a moment. The class could be instantiated as follows:

I Note that SystemVerilog does access checking first, then resolution checking.
This is unfortunate, as it means the code can behave differently when the
access control is changed. This problem is discussed in detail in the book The
Design and Evolution of C++.

OOP and SystemVerilog

descriptor descriptorl = new (source addr,
destination_ addr,

source, length);
descriptor descriptor2;
descriptor?2 = descriptorl;//point to the same object!

descriptor descriptor3; //Careful: null pointer!

The first line declares descriptorl, and calls the constructor method
as declared above, passing in variables as necessary. Next, descriptor2
is created and then is just assigned the pointer to descriptorl, meaning
that descriptor2 is exactly the same as descriptorl. Note that the
next descriptor, descriptor3, is not initialized at all, so SystemVerilog
assigns a special keyword, null, to the variable, because constructors
are not automatically called in SystemVerilog.

Eachlineis valid SystemVerilog, but this might not be what you intended.

Be aware that there are different ways of initializing an
instance pointer.

When writing a class, try to express the intent of the class so that an
unintended use of your class generates a compile error. Though annoying,
compile errors are much easier to understand than run-time errors. Sim-
ilarly, when you get an unexpected compile error, don’t see it as an
annoyance, but rather realize that the person who wrote the class may be
trying to tell you something.

Member methods and variables

In the descriptor class example, a few member variables and member
methods are declared. The member variables are simply integers for the
fields of the DMA transaction. The print () method will simply print
all the current fields of the projects. Member variables and methods can
be accessed like this:

descriptor dl = new (‘'h68000, ‘h20563, 39, 0);
dl.source address = ‘h586;
dl.print ();

An Object-Oriented Framework 35

Chapter 3: OOP and SystemVerilog

Inheritance for functionality

36

By using class inheritance, you can create larger and larger functional
blocks, building upon existing functionality. By inheriting from another
class, you are saying, “I want to start from the functionality of an existing
class and expand upon or change it with the features I define in my new
class.”

Consider our DMA project again. In the first generation of the product
(as described above), the chip would simply store DMA descriptors in
an array and signal when the array was full. For the second generation,
this has been improved and the chip now implements a linked list, storing
each descriptor in off-chip memory.

To enable this functionality, a hardware pointer field must be added for
each descriptor. As a technique, the pointer can be set to 0 to stop the
chip from processing, or it can be set to the first descriptor to implement
aring.

Instead of copying and editing the descriptor class, we can simply inherit
from and expand upon the base descriptor class. This is called inheritance
for functionality.

To create our new, fancy linked list descriptor class, we could
declare it like this:

//in linked list descriptor.svh
'include "descriptor.svh"
class linked list descriptor extends descriptor;
extern function new (uint32 src, uint32 dest,
uint32 length, uint32 next);
extern virtual function void print();
local uint32 next descriptor ; //Pointer to DMA memory

endclass

The extends keyword from the first line of the class states that the
linked list descriptor classinherits from the descriptor class. Now
the linked list descriptor class has all the functionality of the
original descriptor class, and adds the next descriptor variable.

OOP and SystemVerilog

Note that in an extended class, you must manually call the base class
constructor:

//in linked list descriptor.sv

function linked list descriptor::new
(uint32 src, uint32 dest, uint32 length, uint32 next);
super.new (src, dest, length, 0);
next descriptor = next;

endfunction

Inheritance for code interface

As we have seen, inheritance for code interface means using a base class,
with virtual methods, to describe the class framework. This base class
identifies some or all of the methods as virtual; classes extending from
the base class can, and sometime must, implement those virtual methods.

With this technique, standard code interfaces for similar, but different,
components can be used. This is very useful in creating a verification
framework, because in a large verification environment you must keep
track of a large number of components—for example, verification com-
ponents [such as bus functional models (BFMs), generators, checkers,
and monitors], and test components. By defining a code interface to
which each type of component must conform, the ability to reason about
the environment increases.

It should be noted that defining appropriate virtual base classes is not
easy. Overly complicated or overly generic base classes tend to make the
problem of verification more confusing instead of less. In Part III of this
handbook we’ll talk about the trade-offs.

As an example of inheritance for code interface, let’s consider building
a virtual base class for a BFM for a verification project. The team could
decide that all verification components need certain phases (expressed
as method calls), including do randomize (), out of reset(),
start (), and final report ().

These methods ensure that a verification component is randomized, has
time to program its part of the chip, starts up any threads needed to run,
and has a way to print its status once the simulation is done. This can be
done by creating a virtual base class from which all actual drivers inherit.

An Object-Oriented Framework 37

Chapter 3: OOP and SystemVerilog

38

A virtual! base class in our example could look something like the
following:

virtual class verification base;
virtual task out of reset ();/*do nothing */
endtask
virtual task do_randomize (); /*do nothing */
endtask
"PURE? virtual task start (); //NO implementation

'PURE virtual task final report ();
//NO implementation

endclass

What makes the class virtual is the fact that the class starts with the
virtual keyword, and at least one member method is declared by means
of the keywords pure and virtual. In this example, the class declares
how the verification system framework expects any verification compo-
nents to behave, by enforcing that all verification component have at
least these methods.

There are two types of virtual functions: virtual and pure virtual. In the
example above, the first two methods are virtual, the last two are pure
virtual. Virtual functions have a “default” implementation (in our case
they do nothing), while pure virtual functions have no implementation
and are indicated by “pure.” A pure virtual function is one that a derived
class is obliged to implement. For virtual methods, the original method
is used if no same-named method is declared.

Consider an Ethernet driver, which is inherited from the class

verification base.

class ethernet driver extends verification base;
task out of reset();
set up dut();
endtask
task start();
task final report();

endclass

1'InSymemVedkg,mekeywmdsvirtual class mean “abstract base
class” in an OOP sense.

2- Because pure is not yet a keyword in SystemVerilog, Truss uses the macro
*PURE , which will work now and in the future.

OOP and SystemVerilog

In our Ethernet driver, do_randomize () is not declared, so the default
method specified in verification base is used.

This technique of using inheritance for code interface is very important
for creating a flexible, yet reasonable, verification structure. In our
verification domain, many objects must be initialized through many
phases, synchronized, and run. This is not easy for anything but the
smallest projects. However, by using inheritance for code interface and
virtual methods, one can create a powerful and flexible verification
environment.

What’s a header file?

Throughout this handbook we refer to header files and source files. This
is a widely used convention where the class declaration has all methods
declared with the keyword extern, which means there is no body of code
statements to the method. The file that has the class declaration like this
is called a header file and usually has the extension .svh. There is a
corresponding source file, which contains all the method definitions and
usually has the extension .sv. Note the following:

//in bfm.svh...
class a bfm;
extern function new (string name,
virtual interface wires pins);
extern task write (int address, int data);
extern task read (int address, out int data);

endclass

//in bfm.sv

a bfm::new (string name, virtual interface wires pins);
//cache string and the interface

endfunction

task a bfm::write (int address, int data);
//perform a write to the bus

endtask

task a bfm::read (int address, int data);
//perform a read from the bus

endtask

An Object-Oriented Framework 39

Chapter 3: OOP and SystemVerilog

Packages

40

Why go to the trouble of creating both a header file and an implementation
file? To make it easier for other users of your code to reason about the
class. They should spend their effort learning what the code interface is,
from the header file, and not how you actually implemented the class in
the source file.

Use header files (*. svh) and implementation files (*.sv) to
improve the readability of your code.

It happens in every large verification project. You try to link all compiled
files together and run into conflicting variable names; it seems that there
is always more than one module called “generator” or “driver.” It’s
frustrating, because now you have to go back and rename the conflicting
classes and files. Furthermore, the “new rules to follow” probably
becomes “you must insert interface name before variable name,” so you

end up with uart generator and ethernet driver

But how do you deal with code from Intellectual Property (IP) vendors?
How do you know what names they use?

SystemVerilog has a solution to this common problem: the use of pack-
ages. A package is the placement of related classes and global functions
in a logical group. For example, if you are testing an Ethernet protocol,
all your classes and components might go into the ethernet package.
If you are testing a UART interface, consider using the uart package,
and so on.

A package is simply declared as follows:

package pci x;

class master;

endclass

endpackage

Any class or variable wrapped inside the package/endpackage is now
inthe pci_ x package. When you later want to instantiate a pci_x master,
you simply declare what package you are using and what module you
want.

OOP and SystemVerilog

Note, for example, the following:

pci x::master my master = new ("master pci x");

The pci_x:: indicates that you want to instantiate the master class from
the pci_x package. If you are using a lot of components from a certain
package, you can declare that you want to have access to that package
throughout your file! by means of the keyword import, as follows:

import pci x::*;

From that point on, you have access to all components in the pci x
package.

However, be careful about putting an import clause in a header file (a
file with an . svh extension). This is almost always a mistake. The reason
is that the import clause has now been added to every file that directly
or indirectly includes this header file. So, the fact that some code was in
a package is now lost to code that includes this header file. The authors
have been on projects where using import in header files caused the very
name collisions that packages were designed to avoid.

There are a number of caveats about working with packages. One is that
there can be only a single package/endpackage declaration. This means
that you often end up including all the header files in a meta-header file.

package pci x;
'include "pcix master.svh"
'include "pcix slave.svh"
'include "pcix generator.svh"
'include "pcix monitor.svh"
'include "pcix driver.svh"

endpackage

Also, while you can use the extern keyword on class methods included
in a package, their definition must also be within the package/endpack-
age. This is clumsy and can cause difficulties because of 'include file
dependency order. As a convention, the authors put the 'include of the
implementation file as the last line of the corresponding header file.

I The exact term would be “compilation unit.”

An Object-Oriented Framework 41

Chapter 3: OOP and SystemVerilog

Packages can use other packages, but you cannot declare a package within
a package. In addition, while packages are still useful, they do have the
same limitations as interfaces, as we will describe later in this chapter.

In SystemVerilog, enumerations and constants are in either compilation
or $root scope. What that means in normal terms is that you should put
enumerations, constants, and even parameters into a package.

Although packages have a number of unnecessary limitations,
they are still a useful grouping construct.

Separating HDL and testbench code

Wiggling wires:

42

Have you noticed that the OOP features are different from the synthe-
sizable subset of SystemVerilog? The sublanguages are different because
the focus of HDL code is to create silicon, whereas the focus of verifi-
cation code is to test that HDL code. HDL code is concerned with wires,
nets, modules, and loads. Verification is concerned with class hierarchies,
randomization, stimuli, BFMs, and checkers.

This handbook makes a distinction between the two code types, clarifying
the reasoning behind when to use a given feature. You will not find
modules in any of the code snippets or examples (other than in the HDL
code and the testbench top). The authors feel that although the “language”
may be the same, the goals are vastly different.

So how do you cross the border between HDL and testbench code? The
only way SystemVerilog makes the connection between HDL code and
testbench code is through an interface.

the interface concept

So what is an interface in SystemVerilog? At its core, an interface
is a declaration of wires that logically go together. They are the “pins”
of the chip, put into containers that make sense to your team. An inter-
face is a SystemVerilog aggregation construct, similar to module, pro-
gram, or class. An interface allows you to bundle a large variety of
wires and registers into a single named entity that can be easily worked
with.

OOP and SystemVerilog

For example, a protocol consisting of address, data lines, control, and
clocking could form an interface as follows:

interface basic inside;
wire [7:0] address;
wire [31:0] data;
wire clock;
wire address latch enable;

endinterface

So why use an interface? This is the only way to connect to “real”
HDL wires. You could make an interface for every wire, but that would
be clumsy and would not give a single name to related wires.

For each signal in an interface, you have a choice to make. The
interface can either create the signal, or it can just refer to an existing
signal in the testbench.

The basic_inside shown above defines all the signals as originating
from inside the interface. Here is what an interface looks like when
all the signals are passed in as parameters.

interface basic outside (//note the " (" instead of ";"
wire [7:0] address, //use "," instead of ";"
wire [31:0] data,
wire clock,
wire address latch enable
); //end of parameters

endinterface

When to use “inside” versus “outside” is both a matter of what language
the HDL code is written in and your style. In our examples we have
assumed that the HDL code is Verilog, not SystemVerilog, so it is more
natural to have the testbench’s top.v create the wires. Then the inter-
face takes in all the wires, using the “outside” interface technique when
it is constructed.

There are many variants of “inside” versus “outside,” including having
the interface generate the clocks (they can have initial blocks) and
having the interface have some utility methods (they can have tasks
and functions). An interface can be a good singleton (see the OOP
Classes chapter) and can simplify the testbench top; it can also be a good
way to stub modules. An interface can also be used to solve the age-

An Object-Oriented Framework 43

Chapter 3: OOP and SystemVerilog

old problem of when to sample and when to drive. On the downside, an
interface cannot be “new’d,” extended, or randomized, and it is cum-
bersome when used in an array.

Interfaces are THE way to connect the HDL code with the
testbench code. Be cautious of using them for more than that.

Building and using interfaces

Okay, now that we can declare an interface, how do we create and use
one? Interfaces can be created only in an HDL module or in a program
block.! The authors prefer using a module, for several reasons. One is
that we have a module of interfaces for each chip in the testbench. We
can then either build a module with stub interfaces or a module with
“real” interfaces, and the SystemVerilog testbench code is unaware of
the change. The other reason we use a module is that we use the same
program block for all of our testing. (This is explored in the Truss Basics
chapter.)

Interfaces are made just like ordinary variables:

module real interfaces;
basic outside outside 1 (top.adr, top.data, top.clk,
top.ale);

endmodule

To use an interface, you must put the keyword virtual before the
interface name. The real interface will be passed in when the class is built:

class basic bfm;

function new (string name, virtual basic outside bo);
name = name;
basic outside = bo;

endfunction

extern task write (bit [7:0] ad, bit [31:0] data);

local string name ;

local basic outside basic outside ;

endclass

I Creating interfaces is a little weird, because of both the language’s immaturity
and the vendors’ lack of conformance.

44

OOP and SystemVerilog

In the program block, you would create a basic_bfm and pass it a real
instance of the interface:

program a program;
initial begin
basic bfm a basic bfm;
a basic bfm = new ("First BFM",
real interfaces.outside 1);
a basic bfm.write ('h100, 'h02192007);
//other code for the test...
end

endprogram

The actual reading and writing of the HDL values is quite straightforward:

task basic bfm::write (bit [7:0] ad, bit [31:0] data);
@ (posedge (basic outside .clock);
basic outside .address latch enable <= 1;
basic outside .address <= ad;
@ (posedge (basic outside .clock);
basic outside .address latch enable <= 0;
basic outside .data <= data;
endtask;

All these steps may seem a little confusing, but once you’ve done this a
few times, it becomes formulaic. The far trickier parts of verification are
the OOP parts.

First create a module to hold the “real” interfaces of the
chip, then connect these interfaces to your BFMs, monitors,
and so on, in the program block.

An Object-Oriented Framework 45

Chapter 3: OOP and SystemVerilog

Summary

This chapter wove together three themes: the evolution of OOP, the
evolution of verification, and the way SystemVerilog expresses OOP
features.

We spent some time looking at the class declaration, with its accessor
labels, constructors, data members, and tasks and functions.

We then took a look at inheritance and its two main techniques: inherit-
ance for implementation, and inheritance for code interface.

We discussed packages as a way to avoid name collisions. We pointed
out the usefulness of packages, as well as their warts.

Finally, we talked about interfaces, the way to connect testbench code
with HDL code.

For Further Reading

46

] Again, we invite you to read SystemVerilog for Verification: A
Guide to Learning the Testbench Language Features, by Chris
Spear.

] The web has a some good introductory information about
SystemVerilog. Some good sites are www.doulos.com and
www.asic-world.com.

m The official standard for SystemVerilog is IEEE 1800. While dry
reading, it is a must read, at least for the basic data-type sections.
It is also a required reference for what the compiler might be
complaining about.

A Layered Approach

C HAPTER 4

It is tempting, if the only tool you have is a
hammer, to treat everything as if it were a
nail.

Abraham Maslow

For longer than we know, humans have organized themselves into
layers. From the family and tribe all the way up to national governments,
we have created roles and responsibilities. Closer to the hardware domain,
both VHDL and Verilog also use a layering concept, employing entities
or modules to break up a task. The software domain uses the related
concepts of procedures (methods) and data structures (classes). A reason
we humans make layers, with associated roles and responsibilities, is to
simplify our lives.

This chapter looks at how using layers can organize the task of verifying
a chip. We look at a generic chip, albeit one with a “System-on-a-Chip”
bias, and come up with a set of standard, well-defined layers, roles, and
responsibilities. We leave this chapter with definitions of standard ver-
ification layers and detailed diagrams of functional “boxes” and how
they are interconnected. Part II of this handbook will show a fully
implemented SystemVerilog environment that uses this approach. Part III

Hardware Verification with SystemVerilog: An Object-Oriented Framework 47

Chapter 4: A Layered Approach

Overview

48

will talk about general object-oriented programming techniques for
implementing these classes and connections. These techniques, applica-
ble to most of the languages used for verification, express the reasoning
behind the layered approach discussed below.

Throughout this chapter, little distinction is made among architecture,
design, and coding. This is because these activities are interrelated, and
occur at most stages in a project. Also, even with the initial architectural
efforts, you should have a plausible implementation in mind; otherwise,
the architecture may create problems when you are coding.

At many layers, verification environments tend to have the same set of
problems. The essence of this chapter is to show how these common
problems can lead to common solutions. By reusing solutions, the team
can be more productive.

Specifically, this chapter covers the following topics:
] The importance of code layers, roles, and responsibilities

] How to go from a whiteboard verification system to classes and
interconnects, using a standard framework

] Some common components, roles, and responsibilities of a
verification system

There are many successful hardware products. Because success demands
more success, the hardware produced in the next revision of a product
will be more complex than the current version. In addition, the sales staff
wants the product in the shortest possible time. The three competing
factors of quality, functionality, and time to market create stress on the
verification team. You are expected to produce more in less time—and
with increased quality.

So how do you do that? You could add members to your team. While it
is certainly true that there is an appropriate number of people for every
task, adding people creates several issues. One is the need for increased
communication; adding a team member increases the need for each
member to interact with the rest of the team, decreasing productivity.

Overview

Another issue with adding members is team dynamics; each time new
people are added to a team, it takes time for the team to become fully
productive again. Finally, there is the fact that a well-integrated team can
outperform an average team by a huge margin.

Okay, so adding people is a difficult way to build a quality verification
system faster. The authors believe that a good way to do more quality
work in less time is to increase productivity. As humans have done in
the past, productivity can be increased by using layers. Now, we are not
saying a government is a superefficient operation, but rather that a small
team can be more efficient if the verification system is divided into layers.
In addition, the resulting system is more likely to be simpler and able to
be “warmed-over” for the next project.

A major tenet of this handbook is that the most productive
individuals and teams use a layered approach.

By using layers to separate the tasks of verification, common techniques
and solutions can be seen. This allows the team to build up a library of
standard solutions to common problems. Each of these solutions can be
given a name (sometimes as a base class), along with a defined role and
responsibility.

In this chapter we use layers to create a verification system. Starting with
a whiteboard block diagram, we define layers, roles, and responsibilities
and (in theory) arrive at a well-designed system. This technique is used
to show how to move a verification system quickly from a whiteboard
block diagram to classes and functional code.

We do not talk much about language specifics in this chapter, because
the technique of using layers is applicable to almost any language. The
next part of this handbook, Part II, shows specific implementations in
SystemVerilog.

An Object-Oriented Framework 49

Chapter 4: A Layered Approach

A Whiteboard Drawing

50

Most verification systems start on a whiteboard or something similar.
Some engineers get together and discuss how they are going to test some
part of the chip or maybe the entire new product. This initial effort results
in an understandable and “clean” block diagram. However, transforming
this whiteboard sketch to a similarly clear code architecture and imple-
mentation is difficult. This chapter outlines a layered approach to this
transformation.

Note that the layering process occurs in one form or another at many
levels of a verification system, from the full system level down to
individual functional blocks. In addition, the classes and code are con-
stantly refined and modified as the project progresses, so the use of these
techniques is both fractal and recursive. This section focuses on this OOP
process at the outermost level—in other words, from a system perspec-

tive.

A top-level whiteboard drawing might look something like this:

Whiteboard Drawing

verification top ‘

tei'—b{ watchdog timer ‘

testbench

‘ PCI Express component H ethernet component ‘

4

SystemVerilog
HDL

‘ chip ‘

m The verification top block is responsible for instantiating and
ordering the events of other components.

m The fest block is responsible for controlling and synchronizing
each component.

A Whiteboard Drawing

[The watchdog timer is a time-out module that ends the simulation
should something unexpected occur that would make a test run
forever.

] The testbench block is responsible for instantiating each
component block. The PCI Express and Ethernet components here
are important, because they transform test commands into bus
transactions on the chip. They include methods for data
generation and randomization, as well as drivers and monitors, as
will be discussed in greater detail below.

An “ends-in” approach

So where should you start after the first whiteboard drawing is done? A
common approach involves starting at the lowest level of abstraction (the
connection layer) and coding the next layer up, continuing upward until
every layer—including the test layer—has been designed. This is called
the “bottom-up” approach.

However, there is another approach. This alternate approach still starts
with the lowest layer of abstraction (because this is the best-defined
layer), but then builds the top layer next and saves the middle layers for
last. This approach is called an “ends-in” design, because you start by
working on the connection layer and the top-most layer, and then build
your way inward. This is the authors’ preferred approach, because it
maximizes what you already know. You know what the connections of
the chip are (or at least most of them). You have an idea what a standard
test looks like. You can therefore build these layers so that they are
“reasonable” (thatis, others—on the team or off—can reason intelligently
about them). It’s then an engineering effort to make trade-offs between
complexity and adaptability, in order to connect the ends together into a
system that is reasonable at all layers. This is not simple, and it requires
a lot of experience, but the next part of this handbook contains a working
example of how to do it. Part III of the handbook discusses techniques
to evaluate the trade-offs.

An Object-Oriented Framework 51

Chapter 4: A Layered Approach

Refining the whiteboard blocks

It would be tempting to define a class for each block in the whiteboard
drawing shown in the preceding section. While it is possible to do so,
this is not a good solution, because each block, especially a component
block, contains too much functionality to fit well into a single class.
Having classes that are too large leads to a brittle and often complex
design that is not adaptable, or even maintainable.

Instead, it is a good idea to look closer at each block and define another
set of layers. This makes sense, because most blocks can have several
well-defined abstraction layers. This is what the rest of the chapter will
address. Each major section below introduces the general roles and
responsibilities of a block or abstraction level. The sections even get a
bit more specific, suggesting common names for classes at each level.
Some of these names are already common in our industry.

The “Common-Currency” Components

52

The first step in transforming a whiteboard diagram to code is to focus
on the chip connections. The authors call the set of resulting classes the
connection layer. In the whiteboard drawing above, there was a PCI
Express component and an Ethernet component. Because these compo-
nent blocks cover a lot of functionality, there needs to be a set of classes
for each block, as discussed below.

The resulting classes are an example of a design pattern that the authors
call the common currency of a verification system, because they are used
so frequently. In fact, the classes are an implementation of the common-
currency pattern, because the chip can have most of the components
running for every test. Put simply, common currency can be considered
a concept or pattern, of which component classes (such as PCI Express
and Ethernet) are specific instances. These classes are the “money” of
the verification system’s “economy.” Every team member should be able
to identify the currency—in other words, the roles and responsibilities

of the various connections of your chip.

There are many ways to identify a common-currency class in an OOP
language. One way is to have the class inherit from a common-currency

The Component Layer in Detail

base, such as class pci_express monitor extends monitor. In this
case the monitor base class has a set of methods that pciiexpressl is
expected to implement. Another way is to use a naming convention, such
as class ethernet monitor. Note the absence of the base class. While
the “monitor-ness” of the class is not enforced by the compiler, you can
bet the team will have expectations about what this class does.

Sometimes this naming-convention approach is best if the base class has
no methods, or has just light-weight ones such as start (), stop (), and
report (). The art of deciding what is a class, a convention, or a base
class is up to you. Part III of the handbook discusses the various options
and trade-offs.

The Component Layer in Detail

As mentioned above, each component can be divided into more layers
and classes. This promotes adaptability and makes sense, because a
component straddles abstraction layers; at the highest abstraction layer
it consumes transactions, and at the lowest it wiggles wires.

The approach used by the authors is to break each component into three
sublayers. The lower a class is in the component, the more the chip details
that are handled. This layering process is a technique to manage com-
plexity by allowing higher-level code (such as generators or monitors)
to describe the problem in a more abstract way, thus providing a simpler
code interface to the tests and making them both clearer and more
portable.

The following figure shows how the component layer is in turn broken
down.

I or any other class that extends the monitor base class.

An Object-Oriented Framework 53

Chapter 4: A Layered Approach

Component Classes

generator checker

transaction
\ generator agent \ checker agent

‘ BFM agent ‘ ‘ driver agent‘ ‘ monitor agent ‘

agent

BFM driver monitor

connection

—{ virtual interface(s) SyStemJSEilog

‘ c'hip ‘

There are three abstraction layers.

m The transaction layer consists of fairly high-level classes, such as
generators and checkers.

m The next layer down in detail is the agent layer. This is the layer
that implements the connection policy and converts between high-
level transactions and low-layer method calls.

m The lowest layer is the connection layer, in that the objects in this
layer drive and sense the chip wires.

Let’s look at the connection layer first.

The connection layer

The most detailed layer of the common-currency classes is where the
monitor, drivers, and bus functional models (BFMs) exist.! This is shown
in the highlighted section of the following figure.

L with multilayered protocols, the fractal nature of a layer must be considered.
Depending on the test to be run, there will be monitors, drivers, and so on at
each level of the protocol.

54

The Component Layer in Detail

Component Classes - Connection Layer

generator checker

transaction

\ generator agent \ \ checker agent \
\ BFM agent \ \ driver agent\ \ monitor agent\ agent
BFM ‘ driver ‘ monitor
connection

4{ virtual interface(s) }7Sy5temg§[ﬂ°g

| ;hip |

In this handbook, monitors and drivers are considered one-way connec-
tions,1 while BFMs are considered two-way connections. These classes
are generally the only ones that drive or sense the wires.

The connection-layer classes are complex and have a broad footprint. In
other words, they have lots of methods, encompassing everything you
want to exercise. The classes are extremely portable, because, by defi-
nition, the protocol from one chip to the next is well-specified. If, on
another project, you have that same protocol, the monitor/driver/BFM
from the connection layer should be easily adaptable.

The connection-layer classes have only a set of task and function meth-
ods. Their role is to take procedure calls and execute the wire dance that
is specified by the protocol. These classes are responsible for the mapping
between a method call and wire-change sequencing. Whether, and in
what order, these methods are called is the concern of the next layer.

1. A driver sends data and a monitor receives data. Note that the driver or monitor
may both drive and sense wires to do this function.

An Object-Oriented Framework 55

Chapter 4: A Layered Approach

The agent layer

56

The next layer up is called the agent layer, as shown here:

Component Classes - Agent Layer

generator checker

transaction

\ generator agent \ checker agent

\ BFM agent \ \ driver agent\ \ monitor agent\

agent

BFM driver monitor

connection

4{ virtual interface (s) ’_System—\/erilog
HDL

h 4 ~

‘ chip ‘

The agent layer is responsible for using various connection-layer classes
to implement the upper layer’s requests. It is called the agent layer
because it acts as a go-between for two relatively well-defined compo-
nents. Commonly, the classes in this layer add some sort of queue, for
data or control actions, depending on what the upper layers generate or
check.

This layer may also have several implementations. For example, many
chips have multiple ways to send the same data. There could be register,
FIFO, and DMA ways to interact with a chip. You could have three
different connection classes, one for each of these methods. The test
could randomly pick which method to use, and would still look the same.

Because the agent layer is the transaction layer’s view down into the
chip, it also implements the connection policy. For example, you could
use a simple direct connection, thus forcing the generator and driver to
act in tandem. Alternatively, you could implement a multipoint connec-
tion, using events or other broadcast mechanisms, to connect several

The Component Layer in Detail

drivers to a single generator. The same concepts can be used for the
monitor-to-checker connections.

The transaction layer

The uppermost layer is called the transaction layer, as shown in the
following figure.

Component Classes - Transaction Layer

generator checker

transaction
generator agent checker agent
BFM agent || driver agent| | monitor agent agent
BFM driver monitor
connection

4{ virtual interface (s) }7Sy5tem:§[img

h 4 ~

‘ chip ‘

The transaction layer uses the previously discussed layers to exercise
some component or feature of the chip and validate the response. The
exercising (or driving) part of this layer is called a generator. The
response validating (or receiving) part is called a checker. Note that there
may be more than one generator or checker if different types of traffic
are to be exercised on a component. There is a trade-off between making
a single, flexible and capable generator or checker, and having several,
fixed-function simple classes. Choosing which to use is a judgment call

for your team.

These three layers are portable code and can be used for almost any chip.
Of course, the generators will have to be constrained, randomized, and
started. Also, the checker will have to be waited on until it has checked

An Object-Oriented Framework 57

Chapter 4: A Layered Approach

all the expected chip responses. These activities are the responsibility of
the higher test components, as will be described in later sections.

One interesting property of the common currency of component classes
is that each generator and checker probably has at least one thread of
execution. Thisis because hardware is massively parallel, and can operate
multiple protocols independently. In addition, the rate at which the
generation and checking occurs is only indirectly tied to the behavior of
the chip’s wires. For example, a single generated “packet” may require
many bytes to be transferred at the wires, or several data bytes may be
gathered from the wires before the checker is called.

So this is how a test component is broken down into classes that are
manageable and adaptable. The process of examining each chip protocol,
and then implementing a set of interacting common-currency classes to
handle the generating/checking and driving/monitoring, is now repeated
for each protocol. If this method of using layers and the underlying
protocol is well-defined, then there is a good chance that these classes
will be used again in later projects.

The Top-Layer Components

58

The whiteboard drawing is now pretty much converted to code for the
chip protocols. Because we are using an “ends-in” approach, we will
tackle the components at the top before we look at the middle layers.

The top layer has standard form, roles, and responsibilities, just as the
component layer did. The following figure shows the top layer with its
standard classes.

At the very top is the verification top, shown in the following figure.
This component builds the other top-level components and sequences
the initialization, randomization, execution, and shutdown of the simu-
lation. It would be easy to mistake this for the test itself—but wait.

It is better to abstract the functionality of the verification top into an
independent function. In this way, the specifics of the current project’s
tests and testbench are removed from the more generic build, startup,

The Top-Layer Components

and shutdown sequence. The verification top can then be used on multiple
projects.

Top-Layer Verification Components

verification top ‘

4{ test

v

}—b‘ watchdog timer ‘

testbench

\ PCI Express interface \

[generatorl

[checker|

| Ethernet interface |

[generator] [checker]

‘ generator agent‘ ‘ checker agent ‘

‘ generator agent‘ ‘ checker agent ‘

‘ BFM agent‘ ‘ monitor agent‘

‘ BFM agent‘ ‘ monitor agent‘

‘ BFM ‘ ‘ mom’tor‘

I
o

virtual interface(s)

i SystemVerilog
HDL

i

I

‘ chip ‘

Also at this layer, the three main workhorses of the verification system
are the testbench, the test, and the watchdog timer. Like the verification
top, the watchdog timer is most likely a generic implementation. Its role
is to shut down the system if too much time has elapsed.

The testbench is probably specific to a project, but it is the same for most
tests. Its role is to contain the component objects and perform chip-wide
initialization and possibly configuration. The test is responsible for
constraining and sequencing the component objects. (This process is
described further in the next section.)

Note that the test changes with each scenario you want to run. The
testbench and test implementations differ between projects and runs, yet
their code interfaces (by definition, the public class methods) remain
constant. At this high level of abstraction, the concepts of building,
configuring, running, and shutting down a verification test are uniform.

It’s up to the team to decide how to design the class methods for these
standard top-level classes, as well as how to design the build/configure/

An Object-Oriented Framework 59

Chapter 4: A Layered Approach

run sequence for a simulation. The Truss Basics chapter has base classes
for these standard classes.

What is a Test?

60

The previous section went quickly over the roles and responsibilities of
a test. Because a test is an important concept in verification, let’s be a
bit more thorough. A test is one of the main top-layer classes. It is
responsible for exercising some subset of the features of a chip while
background traffic or other activity is occurring. The test’s main partner
is the restbench. Before we talk about the test, let’s review the role of
the testbench and see how the test uses it.

The testbench contains the connection-layer objects for each of the chip’s
protocols. In general, the testbench only holds these objects; it’s up to
the test to use them. However, there is a small exception: when the chip
has mutually exclusive features or protocols. In this case, the testbench
might have an object or two that “chooses” an appropriate configuration.

The test is responsible for “deciding” which features of the chip are to
be tested. Because most chips are massively parallel devices, a well-
designed test focuses on some part of the chip—but it also exercises other
functions or protocols of the chip simultaneously. Often there is a primary
protocol or feature to be tested, and a number of independent, secondary
protocols or features.

After a test has “decided” on a protocol or feature to focus on, it must
constrain the random behavior of those features. The test selects and
writes a configuration to the chip, probably by interacting with the
connection BFMs. After that, the test starts up all the component gener-
ators and runs them until some end condition is met and the end of the
test is signaled. This end condition could be either elapsed simulation
time or whenever the primary component exercise has completed. Finally,
the test waits for all the other components and then reports success or
failure.

Because a chip may have several protocols, it can become tedious and
clumsy to work with the component-layer generators, BFMs, and check-
ers directly. The test may become cluttered with management code, and

What is a Test?

it may be difficult (for all but the original writer) to figure out the point
of the test. Also, many tests will use many combinations of chip protocols
and features, so that much of the code is replicated. For these reasons,
it’s better to group a chip’s component-layer test into a concept the authors
call a test component. In addition, the other protocols that are just
exercising the chip as background traffic are packaged into irritator
components. These components are “middle layers”—that is, they con-
nect the connection layer to the top layer.

Here is an example of what the components of a simple PCI Express test
might look like:

Example PCI Express Test

Main test part
PCI Express test component

Background traffic
Ethernet irritator

Background traffic
USB irritator

Background traffic
UART irritator

The test component is described in the next section, and the test irritator
is described after that.

To summarize, a testbench holds the component-layer objects, which the
test selects, constrains, and controls. It is good practice to break a test
into test components, one for each protocol or feature of the chip. For a
specific test, a few test components are the main components, while other
components—the irritators—provide background traffic.

An Object-Oriented Framework 61

Chapter 4: A Layered Approach

The Test Component

62

The whiteboard drawing probably does not include information about
the middle layers. This section details some of the questions and decisions
related to the middle layer. It is at this middle layer where common
questions such as “What object should set what parameters?,” “What
should be randomized and when?,” and “How do we know when we are
done?” are answered. In some sense this is the hard part of the verification
system, where a lot of mental energy is spent.

The implementation of the middle layer starts with listing the types of
exercises you want to perform on a protocol or feature of the chip. Often
these test requirements take the form of sequences that exercise the basic
data paths and functionality of the chip, including error cases.

Once you have this list, you create a middle-layer class to represent each
exercise. The authors call these classes the test components of a test. A
test component does not just represent a stimulus or a scenario for a
protocol; it also includes the end condition. In a sense, a test component
has a code interface like that of the verification top, evidence of the
fractal nature of a layered approach.

A test component is used to exercise some specific functionality of the
chip. In fact, a test component is often used with other test components
to create a rich test, with the other test components acting as “background
noise” generators (irritators). This is a benefit of designing test compo-
nents as a separate class, instead of directly implementing the exercise
in the test.

Another benefit of separating the test from test components is that the
test is a layer above the test components, creating them, giving them the
appropriate parts of the testbench, and setting their parameters. This
allows different tests to drive the same test components differently,
perhaps letting a test component “roam” on its parameters, or maybe
constraining it to hit a corner case.

In general, a test component, on construction, gets references to a gen-
erator, a driver/BFM, and a checker of a chip protocol. The references
come from the testbench.

The Test Component

Why not take in the entire testbench? By not just referencing an entire
testbench, but instead taking the pointers it needs, each test component
manages complexity by minimizing the assumptions on the environment.
In addition, the test component maximizes the chance that it can be
adapted to other testbenches. By having a test component itself perform
an exercise, instead of directly implementing the exercise in a test, you
have a better chance of ensuring the adaptability of the exercise.

Let’s look at a concrete example. Suppose you are driving packets into
a chip from one protocol and collecting processed packets on another
protocol. To test this data path, your test system will look something like
this:

Test Component Connections
| BFM/driver |y chip | BFM/monitor |

generator checker

()reas
start()

()e3s
start()

‘sta—rt()’ packet test component

The packet test component class gets a pointer to both BFMs, a generator,
and a checker. The role of the packet test component is to exercise some
part of the chip by using these other components.

For some methods the test component may just relay calls from the test.
In this example, a start() method calls start () on the generator,
checker, driver, and monitor. Recall that the test could have called all the
component layer objects directly; the test component layer just makes
the test clearer.

One nonrelay task that the test component performs is to sequence the
generator. For example, the packet test component mentioned above
would probably tell the generator to generate a certain number of packets.

An Object-Oriented Framework 63

Chapter 4: A Layered Approach

This number might be set by a randomized parameter, or it could be fixed.
There may be other component-layer parameters that the test component
controls, such as packet size or protocol configuration parameters. This
is where the test component implements what is in the test plan.1

The test component is essentially an aggregator. Given
pointers to a component’s generator, BFM/driver, and
checker, the aggregator sequences these.

The Test Irritator

64

We have only one more part to consider before we complete the conver-
sion from a whiteboard drawing to a verification system. This last part
addresses how to write background traffic components. Recall that a
robust test has a test component and several other background traffic
components. The idea is to ensure that the chip can function in a real-
world scenario.

When you start writing tests, you will probably start with test compo-
nents. Then, after the tests are stable, you’ll want to add auxiliary test
components.The name the authors use for these auxiliary components is
irritators. An irritator is most likely to have “evolved” from one of your
test components for that chip interface.

When converting a test component to a background traffic generator, you
must alter the component so that it addresses not an internally governed
amount of traffic but rather an externally controlled one—so that, for
example, it does not use a fixed-length group of packets but instead an
infinitely repeating sequence of packets. In other words, you want the
nonessential irritators to continue doing whatever chip exercise they do
until your test says to stop.

The Truss chapter has an irritator base class that is inherited from
the test component base class. If you write your test irritators so that

I A discussion of a test plan is beyond the scope of this handbook, but basically
the plan is a list of the exercises you need to perform on the chip.

A Complete Test

they use these base classes, irritators can be implemented with very little
effort.

By adding irritators, you can write tests that are
understandable yet reasonably complex.

A Complete Test

Let’s take a step back and look at what we have accomplished. We have
progressed from refining a whiteboard drawing to defining responsibil-
ities for classes and code. We now have definitions for sets of classes for
each protocol of the chip. We have a testbench that contains instances of
each of these classes. We also have a set of test components and irritators
that can be combined like building blocks to create a diverse set of tests.

At the top-most layer are the tests. These tests should not only exercise
a main function, but also leverage the work of the other team members
by using irritators as nonessential traffic. These tests should exercise the
chip fairly well.

Shown below is an example of a test that uses the layers we have talked
about, an example UART test with several irritators added.

An Object-Oriented Framework 65

Chapter 4: A Layered Approach

66

UART Test Example

verification top

4{ test }—b watchdog

timer
h 4
testbench
!Ethernet | Ethernet irritator ‘
interface ‘
PCI Express | PCI Express irritator |
interface
h 4
‘ UART interface }kf\ UART test component |

SystemVenlog

1 HDL
chip

This example test includes a “main” test component, called UART test

component, which probably walks a range of configurations and sends
some amount of data. The test also includes Ethernet and PCI Express
irritators.

Many choices still remain, such as exactly how to sequence the bring-
up, running, and shutdown of these test components. The next part of
this handbook provides a standard framework to help you make these
choices.

You must still decide how to randomize and constrain the test parameters.
For example, there are implementation choices regarding what control
variables to include in the test components and the irritators, as opposed
to control variables in the generator and configuration for the connection
layer. Although these are not simple choices, the next few chapters should
help to clarify the trade-offs.

This completes our first pass at converting from a whiteboard drawing
to code. As mentioned earlier, this exercise is essentially repeated con-
tinually, even as code is written. In other words, reality happens when
you write the code.

Summary

Summary

This chapter talked about layers. We talked about using layers to increase
productivity, by managing the complexity of a verification system.

We talked about “ends-in” coding, where you start at the bottom and top
of the test and code towards the middle. We considered this technique
of looking at the chip and creating component layers as the first step in
creating a verification system. We then went to the top layer, and talked
about the verification top and the three top components: the watchdog
timer, the test, and the testbench.

Next, we entered the middle layer, where we talked about using a test
component to exercise a particular configuration or data path of a chip
protocol. The idea that a test really should have several components
exercised at once formed the reasoning behind the irritator layer.

We ended the chapter with a quick tour of a completed test, noting that
there are still more decisions to be made as the implementation of the
verification system proceeds.

For Further Reading

] The Mythical Man-Month, by Fred Brooks, is the classic
handbook that talks about why one should not put additional
people on a team to solve a problem. He argues, as we did in this
chapter, for a more productive team.

m A Few Good Men from UNIVAC, by David E. Lundstrom, talks
about the concept of a focused and productive team. This book is
about the origin of supercomputers.

u On the Criteria To Be Used in Decomposing Systems into
Modules, by D.L. Parnas, is a 1972 landmark paper on how to go
from a problem statement to a design. The fancy name for this
process is called decomposition. The current fancy terms for
thinking about design are “design patterns” or “factory objects.”
However, be careful with these recent concepts; they refer to good

An Object-Oriented Framework 67

Chapter 4: A Layered Approach

68

high-level solution templates, but those templates must be applied
with care and experience.

The concept of design directions came from Harlan Mills and
Niklaus Wirth at IBM in the 1970s. Their original idea was to use
a “top-down” approach, but all variants have been popular at
various times. The authors believe that an “ends-in” approach is
the best for the class of problems encountered in verification.

Part Il:

An Open-Source
Environment with
SystemVerilog

The previous part of the handbook was a high-level look at System-
Verilog and how to architect a verification system by using layers. Now
we focus on a specific implementation of such a system.

This part of the handbook introduces two open-source libraries, called
Teal and Truss, that together implement a verification environment. The
authors and others have used these libraries at several companies to verify
real projects.

The libraries are free and open source because the authors feel strongly
that this is the only way to unite and move the industry forward. Locking
up people’s “infrastructure” is not the way to encourage innovation and
standardization—both of which are needed if the verification industry is

to improve.

Consequently, you’ll find no simulator-company bias in these libraries.
These libraries work on all major simulators.

In this part we discuss the following:

Hardware Verification with SystemVerilog: An Object-Oriented Framework 69

70

Teal, a set of utility classes and functions for verification

Truss, a layered verification framework that defines roles and
responsibilities

How to use Teal and Truss to build a verification system

A first example, showing how all the parts we talk about fit
together

Teal Basics

Coming together is a beginning. Keeping
together is progress. Working together is
success.

Henry Ford

B uilding a verification system is a daunting task, but build we must.
That is why we use the technique of layering, to break the problem down.
By starting with the lowest layer—that is, the one that directly drives and
senses the wires—we can start to get some real work done. That is covered
by SystemVerilog’s interface feature. The next layer is the basic building
blocks, such as loggers, parameters, and memory access. Teal is a col-
lection of building blocks. Teal tries to be as unobtrusive as possible,
allowing you and your team to make framework decisions as you see fit.

This chapter introduces Teal and shows how to use it. We’ll talk a bit
about the main parts of Teal—for example, how you can get and set
memory or registers in the chip, and how you can create a flexible, yet
simple log messages.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 71

Chapter 5: Teal Basics

Overview

Teal is a set of utilities implemented in a package. Teal is tiny, consisting
of only a handful of source files, yet it provides the necessary minimum
features for verification. (Teal is freely available at www.trusster.com.)

Teal is unobtrusive; it does not get in the way of your verification
structure. Teal provides the general functions that most verification
systems use.

The authors realize that many companies have developed their own
version of a “Teal.” We encourage those companies to contact us and
share their experiences, so Teal can be made better. This is one of the
reasons why Teal is open source.

Teal’s functionality provides the basis for functional verification, but it
serves as only a small part of a verification project. You must still write
code that stimulates the design, checks the output, and controls the
randomness. That is the real work of a verification project. (The next
chapter talks about an open-source verification environment.)

Teal’s Main Components

72

Itis important to decide on a “common currency” when designing a class
library. The rest of this chapter describes the common currency of the
Teal system—that is, the fundamental building blocks of Teal-based
verification.

The following is a summary of the most important classes and functions
of Teal; more detail is given in the following sections.

] The vout class—This Teal class is used for logging, to help trace
what happens during a simulation. The vout class provides the
ability to report, for example, debug, error, and other informative
messages in a consistent format that is coordinated with HDL
outputs.

(] The v1og class—This class is a global resource that coordinates
all the logging from your code. It receives all vout messages from
the simulation and implements a filter chain, so you can add

Teal’s Main Components

useful features such as replicating output to a file and removing
messages or parts of messages.

(] The memory functions—These functions provide an abstract
interface for reading and writing memory. Internally, a group of
memory banks are used to handle memory read and write
requests, providing great flexibility.

] The vrandom class—Because using random numbers for test
values is a staple of modern verification, this class is Teal’s stable
random-number generator. Though SystemVerilog provides a
sophisticated rand/constraint capability, this class is small and
completely under your control. The class provides independent
streams of stable random numbers that are guided by a single
master seed. Of course, the numbers all have their own seed as
well, based on what you provide. This allows these numbers to be
stable and create a new stream of numbers only when you change
their local seed or the master seed.

n The dictionary functions —These functions are a global service
that abstracts how to set parameters in your test. They provide the
functionality to get and retrieve parameters from code, the
command line, or external “scenario” files.

] The 1atch class—This class provides a latchable/resettable event,
so that you do not have to worry about thread execution order, or
about missing an event that occurred during previous forks. You’ll
use this whenever you have two classes that want to communicate
a status, such as a generator or monitor, to a higher level to
indicate completion. The examples show several uses of a latch.

All of these classes and functions are described in the following sections.

An Object-Oriented Framework 73

Chapter 5: Teal Basics

Using Teal

It’s time to dive into some details regarding how Teal can be used for
functional verification. This walk-through of Teal makes it easier to
understand the “real world” examples presented in subsequent chapters,
while illustrating how Teal can be used in your environment.

A simple test

When the simulation begins, your program block is executed. The pro-
gram block could be as simple as the following:

'include "teal.svh"
program verification top();
initial begin
teal::vout log = new ("first code");
log.info ("Hello Verification World");
end

endprogram

Logging Output

Because a lot of debugging is done by reading simulation log files, in
order to see a progression it is important to organize simulations well.
In other words, to enable postprocessing, error counting, messaging, and
possibly filtering, it is important to have a consistent message format.
Fortunately, the logging facility in the Teal classes encourages such
uniformity. Teal comes with a standardized, customizable logging mech-

anism, called vout.

Teal uses a two-level logging scheme, as shown in the following figure.
In any code that needs to print information, a vout object is created. As
many vout objects as needed can be created—which is good, because
each vout object can have a relevant instance name.

74

Logging OQutput

Each vout object “under the covers” calls a global service v1log object.
This is done so that there is a single point of control where the reordering,
changing, or deletion of parts of any message can be done.!

vout and vliog Objects in Teal

verification_top

vout

uart_checker

vlog

Note that vout simply takes a string. By calling the appropriate func-
tion—info (), error(), fatal(), debug()—vout can provide this
information to the v1ogclass. This information is not just sent as a string,
but is passed as metadata that can be useful for further processing. This
is described more fully below.

When you create a vout, you give it a string that represents the functional
area it is in. You can then build any number of message statements. For
example, note the following:

'include "teal.svh"
program verification top();
initial begin
teal::vout log = new ("a test");
log.info ($psprintf?® ("val 0x%0x", 207218);
end

endprogram

This example prints the following (assuming a simulation time of 77 ns):

[77 ns] [a test] wval 64 0x32972

I Although describing this capability completely is beyond the scope of this

handbook, subsequent chapters show several examples.
2. Note that while Spsprintf () is not a part of the standard, all the major
vendors provide this call.

An Object-Oriented Framework 75

Chapter 5: Teal Basics

76

Note that when you call one of the display methods—info (), error(),
fatal (), debug ()—the voutinstance adds the simulation time and the
functional area to the message, then sends the message to the v1og global
service. It does not send the message as a text string, which would not
allow the efficient modification of the message; rather, it sends the
message as a set of pairs of IDs and strings. This allows you to instruct
the vloginstance to modify messages with respect to their components—
for example, to demote errors to a warning, or stop all output from a file
or a functional area.

However, you often do not need to use the global filtering mechanisms
of vlog. Instead, you can turn off the display of parts of a message
directly, at the vout instance. This is done by calling the
message display () function with the ID of the item you want to display
(or not). By default, all items are displayed.

Most verification systems have several levels, or types, of messages.
Teal, being no exception, uses the following general categories:

[] info (msg)— Used for standard messages.

] debug (msg) /debug n (<level>, msg)—Used when a test wants
to display a little more diagnostic information. This is a level-
sensitive output; the vout class has level-setting methods and
accepts a level for debug messages. The message is displayed only
if the level of the message is less than or equal to the level that is
set. The debug (msg) method uses a level of 1.

[error (msg) —The error type is used when the chip’s actual
behavior is different from the expected.

(] fatal (msg)—This more-severe error type ends the simulation
after displaying the message.

Examples of the above are provided in later examples.

Using Test Parameters

Using Test Parameters

It is often important in functional verification to provide test parameters.
These are frequently used, among other things, as bounds for random
tests. For example, a single test case may have several different sets of
test parameters—including, say, the maximum number or errors before
the test is forced to terminate, or the maximum amount of time the test
is allowed to run. Sets of test parameters can also be used to direct a test
into interesting corner cases.

Because such parameters are commonly used, Teal provides a standard,
flexible way of working with them. Test parameters can be defined by
means of text files, code, or command line entries. Teal handles simple
integer and string parameters as well as complex parameters.

Teal’s dictionary functions are used to access test parameters. Teal
maintains a list of parameter names and values, so that a test, for example,
can query the dictionary and recover the value.

When you call the dictionary read(string) function, Teal reads a
text file, takes the first word on each line as the parameter name, and
saves the rest of the line as data for that parameter. A special keyword,
#include, is used to open other files from within files. If a parameter is
repeated, the last definition is saved.

In addition to using files, you can also use code to add parameters. When
you do this, you have the option of replacing an entry or not.

Parameters can also be entered on the command line. In this case, they
override any parameter set by a file or the code. In this way, a parameter
can have a default value but still be overridden by a script.

As an example, let’s suppose we are testing a UART interface. We have
a default parameter file that sets up default constraints, and then each
specific test overrides a few values as well as defines its own parameters.
The default parameter file could look like this:

//in default parameters.txt:
force parity error 0

dma enable 1

baud rate 115200 921600

An Object-Oriented Framework 77

Chapter 5: Teal Basics

78

A specific parity-error test case could use the default parameter file and
override the force parity error setting like this:

//in parity error test parameters.txt:
stop error probability range 32.81962 75.330
#include default test parameters.txt

force parity error 1

The #include default test parameters.txt line above tells the
dictionary to open the default test parameters.txt file. The
force parity error 1 repeatsthe force parity error parameter
and overrides the default value.

It is not always appropriate to use files to pass parameters. Using files
can be good if you need to have many different test parameters and a few
basic tests. However, it can be clumsy to make sure the files stay with
the respective test code. Therefore, the examples later in this handbook
use the code mechanism. Nevertheless, including such files, or even
passing parameters on the command line, can be done after most of the
test is written, without having to modify the test itself.

So how do we pick up the parameters? The following is a complete basic
example of how these parameters could be retrieved:

'include "teal.svh"
import teal::*;
program verification top();
initial begin
//reads file shown above
dictionary read ("default parameters.txt");

vout log = new ("first parameter example");

log.info (Spsprtintf ("force parity error is %04",
dictionary find integer ("force parity error"));
end
endprogram

Because most parameters are not strings, Teal provides a function,
find integer (), to convert parameters to the correct variable format.
The find function always returns a string—either an empty string ("")
if the parameter is not found, or the actual string associated with the
parameters. The find_integer () returns an integer if the string is found,
or returns the passed-in default if it isn’t.

Accessing Memory

If using £ind () or find integer () is not appropriate for your appli-
cation, you can use the $sscanf (). This allows the code to create a
stream from a string, from which you can then extract the chars, ints,
doubles, and so on, as needed.

For example, to read the stop error probability range (from the
example above), you would use the following:

'include "teal.svh"
import teal::*;
program verification top();
initial begin
dictionary read ("parity error test parameters.txt");
//reads "32.81962 75.330" from file into s

string s = dictionary find("stop error");

real stop error min = 0;

real stop error max = 0;

int foo = S$sscanf (s, “%f, %f”, stop error min,

stop_error max;
teal::vout log = new ("showing double double reads");
log.info ($psprinf ("Stop error range is $0f to %0f",<<
stop error min, stop error max));

end
endprogram

Accessing Memory

For most verification projects it is important to be able to access memory.
Sometimes you want to do this in zero simulation time. Allowing “back-
door” accesses of memory improves simulation performance, allows the
monitoring of memory for automatic checking, and makes it possible to
insert errors into memory for test purposes. Teal provides such a “back-
door” mechanism but also, of course, supports “front-door” access, which
can map some memory address ranges to a transactor-based model.

Teal defines each accessible memory (transactor model or memory array)
as a memory bank object. A memory bank object can be accessed
directly through member functions called to memory() and
from memory (), buteach memory can also be associated with an address

An Object-Oriented Framework 79

Chapter 5: Teal Basics

range, through the add map () function. In this way, memory can be
accessed through addressing by means of read () andwrite () functions.

Working with address ranges has many advantages, because it creates
code that is easier to understand.

When writing a memory transactor, you must define your own
memory bank object, using virtual interfaces or pointers or channels to
BFM transactors.

The following example shows how HDL memory arrays can be associated
with an address range and accessed. An example of how to write memory
transactors is in the UART example chapter.

A memory example

80

The following diagram shows a small part of a larger testbench structure.
This environment verifies a graphics chip that saves graphical texture
information in its memory cache. In order to speed up simulation, back-
door loading of the texture into the chips memory is used.

Memory Bank Objects

| SV | hdi

Your verification code

' map() |[read() | | write() |

GPU

n

hd

l memory_cache

memory_bank ‘ }memory_1 ‘

Memory bank lookup ' memory_bank | 'memory_2|
memory_bank | 'memory_3|

To support direct memory access you need to do a few things. First, you
need to create an interface to the memory register bank. Then you need
to define a subclass of teal::memory bank that takes in a virtual
interface of that type and performs the from memory () and
to _memory () functions. After that, you need to create an instance of

Accessing Memory

that class and give it to Teal’s memory manager by means of the
teal::add memory bank() function. Then you need to define an
address range for each memory instance to be used, allowing Teal to
translate from an address to a specific memory. Finally, once the address
range is established, you access that memory through read() and
write () functions. Whew! That sounds like a lot of work, but it really
isn’t. It’s just that describing code is clumsy.

To do this in the environment pictured above, an interface and a memory
class is defined (that is, the memory model is instantiated as memoryl,
memory2, and memory3, above). So part of the memory model looks like
this:

//In Verilog HDL, here is what the actual memory arrays are
reg[31:0] memory bank 1[1024:0]; //Actual memory array
reg[31:0] memory bank 2[1024:0];
reg[31:0] memory bank 3[1024:0];
//now in a SystemVerilog header file,
//perhaps chip interfaces.svh, define the interface and
// class
interface gpu ram (output reg[31:0] bank([1024:0]);
endinterface
class gpu memory bank extends teal::memory bank;
function new (virtual gpu ram g);
super.new ("gpu ram");
gpu_ram = g;
endfunction
//now override the access tasks
virtual task from memory (bit [63:0] address,
output bit [teal::MAX DATA - 1:0] value,
input int size);
value = gpu ram .bank[address];
log .info ($psprintf ("Read[%0d] is %0d", address,
value)) ;
endtask
virtual task to memory (bit [63:0] address,
input bit [teal::MAX DATA - 1:0] wvalue,
input int size);
gpu_ram_.bank[address] = value;
log .info (Spsprintf ("Write[%0d] is %0d",
address, value));
endtask

An Object-Oriented Framework 81

Chapter 5: Teal Basics

82

local virtual gpu ram gpu ram ;

endclass

Now the real interfaces of the chip must be created. The way the authors
like to do this is in a separate module from the top.v (testbench top).
The reason for this is to support building “dummy interfaces” if parts of
the chip are not built yet or are stubbed out for some reason.

module interfaces dut;
gpu_ram gpu ram 1 (top.memory cache.memory 1);
gpu_ram gpu _ram 2 (top.memory cache.memory 2);
gpu_ram gpu ram 3 (top.memory cache.memory 3);

endmodule

As can be seen in the code below, the memory model gets instantiated
three times as memoryl, memory2, and memory3. In the
verification top () program, the three memories get address ranges
declared like this:

program verification top();
initial begin
gpu_memory bank gpu memory 1 =
new ("top.dut.gpu.memory cache.memory 1",
interfaces dut.gpu ram 1);
gpu_memory bank gpu memory 2 =
new ("top.dut.gpu.memory cache.memory 1",
interfaces dut.gpu ram 2);
gpu_memory bank gpu memory 3 =

new (“gpu memory 3",

interfaces dut.gpu ram 3);
memory::add memory bank (gpu memory 1);
memory: :add memory bank (gpu memory 2);
memory: :add memory bank (gpu memory 3);
memory: :add map

("top.dut.gpu.memory cache.memory 1",

'h100, 'h200);
//The following assumes the subpath memory 2
//1is unique

memory::add map ("memory 2", 'h201, 'h400);
memory::add map ("memory 3", 'h401, 'h600);
end
endprogram

Accessing Memory

Now any test can access these memory spaces through simple read and
write function calls. Furthermore, neither reading nor writing memory
consumes any simulation time.

So why bother with all this machinery? First, most of the machinery
would have to have been built anyway. SystemVerilog needs a virtual
interface if it is actually going to poke the HDL. So you need to define
a virtual interface and its real instance. Then you need to have the
assignment statements that are within the memory bank. The benefit that
the memory bank and map machinery add is to abstract the pin manipu-
lation, or reach inside the DUT, with a simple read/write interface. Once
memory banks are in place, this interface can be used to access any part
of the DUT. The test writer is freed from figuring out how to perform
access, and simply needs to look at the register/memory map specification
for the chip in order to read/write. The power of this simplicity cannot
be overstated.

Note that this technique can also be used to simplify register access. The
examples use this technique, so you can see how it makes the driver code
easier to write and understand.

In addition, should the testing team want to switch to front-door access,
such as going through PCle or a I2C protocol, this can be done without
any changes to the “user” code.

A basic memory access would look like this:

teal::uint32 actual;
teal::write('hlO0a, 22, 32); //'ha in memory 1 = 22
teal::read('hl0a, actual);
if (actual != 22)
begin
teal::vlog log = new ("memory example 1");
log.error (
Spsprintf
("At memory 1['ha] got 'h%0x expected 'h%0x",
actual , 22)):;

end

Note that while the memory is written and read at 'h102, the actual
memory is accessed at 'h0A. This is because of the add map () that we
performed, which allows the rest of the verification system to read and
write memory as specified in the chip’s memory map. Teal takes care of

An Object-Oriented Framework 83

Chapter 5: Teal Basics

Constrained

finding the correct memory bank to access, and then removing the
mapping offset.

Random Numbers

It is important to have a stable, repeatable, seeded random-number
generator. While SystemVerilog provides an extensive random feature
and a constraint language, sometimes more is not always better. For
example, not knowing what SystemVerilog uses as the local seed can
lead to a test that changes its random behavior when you do not want it
to. The constraint language is another consideration. While vast, it is
still declarative, and it’s up to the constraint solver to pick among the
universe of acceptable random numbers. This can lead to confusing
behavior and contradictions in the solver. Finally, sometimes it’s easier
to express the constraints on the random behavior as just a procedure.
The examples in the book sometimes use Teal’s random and sometimes
SystemVerilog’s, just to show that a problem can be solved several ways.
As usual, it’s up to your team to decide what it wants to use.

Teal’s vrandom class provides independent streams of random numbers
that can be initialized from a string or file. There are also convenient
macros for the most common random calls, such as getting a random
integer value or getting a value from within a range.

The rest of this section describes the required initialization of the random
generator and some simple examples.

Required initialization

84

Before using any random numbers you must initialize the random-number
generator. This is done by calling the init with seed() function and
passing it a 64-bit seed value. It is recommended that higher-level code
keep track of this seed value and pass it to the random number generator.
To initialize the random seed generator you would call the following:

teal::uint64 master seed;

// master seed gets initialized by higher layer

Constrained Random Numbers

teal::vrandom init with seed(master seed);

After the random-number generator is initialized, it is ready to be used.
The examples in this handbook use the dictionary to get the master seed.
Also, the examples use the same seed as SystemVerilog, so there is only
one master seed.

Using random numbers

Because integers are so commonly used here, Teal provides a couple of
macros to deal with integers. After you have initialized the random-
number generator you can call these macros directly. The most often
used macros are RAND 32 and RANDOM RANGE, which generate a 32-bit
random value and a 32-bit value within a range, respectively.

Here are some examples:

'include "teal.svh"

program verification top();
initial begin
teal::uint32 a rand32; ‘RAND 32 (a_rand32)
teal::uint32 a random range;

'RAND RANGE (a_random range, 0, 'h030837);
teal::vout log = new (" random number test");
log.info ($psprintf (

"a rand32 is %0d a random range is %0d",
a rand32, a random_range));
end

endprogram

When you want to create more-elaborate random numbers, you need to
work with the vrandom class directly. The vrandom class is a simple
class that you can draw numbers from after it is created. This gives you
more direct control over the generation of random numbers. The base
vrandom class provides a uniform distribution, but you can create your
own classes to have segmented, logarithmic, or other distributions.

You would create an object for your inherited class and draw a number

like this:
my vrandom a random = new ("some string", some integer);
teal::uint32 a random value = a random.draw();

An Object-Oriented Framework 85

Chapter 5: Teal Basics

These parameters are hashed with the master seed and are used to
initialize this particular random-number generator. You may want to pass
in your own values.

Working with Simulation Events

86

SystemVerilog provides events to allow threads of execution to commu-
nicate. Unfortunately, there are some restrictions on the event handling.
One of the most tricky is that the events do not latch, so if an event
happens and a receiving thread is not waiting, the event never “hap-
pened. > This can be desirable, but most often is not what one wants. So
Teal provides a latchable event.

The latch class just includes a bit with the event, so that the “tree
falling” event is remembered. When another thread goes to wait on the
event, it will either pause the execution and wait for the event, or, if it
already occurred, just return.

The latch can be “one-shot,” that is, automatically resetting after being
read, or it can wait for a manual clear. Sometimes it doesn’t matter, if
the event will happen only once in the simulation. This is generally the
case with checkers and their “done” event.

'include "teal.svh"
program verification top();
initial begin
teal::latch latch 1 = new ("latch for checker");
fork begin
begin
$display ("do checking");
#10;
latch 1l.trigger ();
end
begin
#11; //thread "misses” the event
latch 1.pause ()
$display ("checking is done");

1. Like the tree falling, unheard, in the forest.

Summary

end
end
join
Sdisplay ("test is done");
end

endprogram

Now obviously this example is contrived, but the point is that sometimes
you cannot guarantee that a thread is waiting before the event is issued.
It’s safer to use this little object than to debug a race condition that might
change with the seed.

Later in this handbook there are many examples of how to use latches.

Summary

This chapter introduced an open-source package called Teal. We talked
a bit about what Teal provides and its components.

Logging is a very important capability of a verification system. Teal’s
vout class and the global service class vlog provide a uniform, yet very
flexible, logging capability.

Almost all tests need to have control parameters set by code or files.
Teal’s dictionary provides a global service for managing parameters.

The memory functions of Teal can be used for both register access and
internal chip memory accesses. If reads and writes are extracted from
the actual underlying mechanism, different transactors can be used.

Random numbers are essential in verification systems. Teal provides the
vrandomn class, a stable, independent random-number generator.

We ended the chapter with a look at Teal’s 1atch class, and considered
why you might need to use it.

An Object-Oriented Framework 87

88 o 0 0 0 0 0 0 Hardware Verification with SystemVerilog

Truss: A Standard
Verification Framework

C HAPTER 6

Truss, and verify.
Anon.

Have you ever watched a building being constructed? Early in the
project, when the frame of the building is just a skeleton, it’s not clear
what the finished building will look like. However, as construction
continues, from the windows down to the cubicles that are our workplaces,
the intent of the framework becomes clear. In fact, a large part of the
building’s presence depends on the fundamental structure.

This same basic process occurs when we build a verification system.
Early in the project, the application framework is built. The result of
years of best practices from both the verification and software fields,
Truss is an application framework for verification. It is an implementa-
tion, and therefore makes some decisions about how things should be
structured. With verification as with construction, the framework sets
the tone for the system.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 89

Chapter 6: Truss: A Standard Verification Framework

Overview

90

Truss is a layered architecture, so you can choose how to implement the
layers. Although it makes very minimal assumptions, Truss does provide
some base classes and conventions as a guide.

This chapter presents three main topics:

m The roles and responsibilities of the various major Truss
components

] How these components work together
] How you adapt this framework for your verification system

This chapter builds on the two previous chapters of the handbook. It
implements an open-source verification infrastructure based on the dis-
cussion in the Layered Approach chapter. It also uses the Teal library
described in the previous chapter.

Teal provides the fundamental elements of a verification system and
supports a wide array of methodologies. Truss, on the other hand, pro-
vides the infrastructure layers above Teal, adding a set of classes, pseudo-
templates, idioms, and conventions to facilitate the construction of an
adaptable verification system.

One of the tricks in building a reasonable infrastructure is to find the key
algorithm. The rest of the algorithms can usually fit around that key
algorithm. For example, in a video editing program the key algorithm is
all about getting the pace of the edits right. When you watch a movie,
that happy, sad, or scared feeling you get comes from how well-timed
and precise the changes in scene are.! The authors, having developed
software for video editing systems, know that in this domain the key
algorithm is implemented by adjusting the edit points of a few seconds
of video while the video is constantly looping around those edits. This
is not a trivial thing to do, because multiple streams of video and audio,
possibly with software algorithms to implement effects, are changing as
the user is adjusting the edit points.

I Okay, emotions also come from the music, but everything works together.

General Considerations

So what’s our point? Well, in the verification domain, the key algorithm
is the sequencing of the various components of the system. The authors
refer to this as “the dance,” as there are usually a few interacting com-
ponents involved. As we talked about in the Layered Approach chapter,
the top-level dance takes place between the test, the testbench, and the
watchdog timer. Truss implements this dance in the verification top
program—but Truss does not stop there. The authors believe that this
dance is the key algorithm in several layers of the system, so we created
a verification component base class. Also, we created
test component and irritator base classes to be the “top” at the
component layers of the system. Recognizing and reusing the dance is a
significant part of Truss.

This chapter explains the major components of Truss, providing code
examples where appropriate. Subsequent chapters provide more-detailed
examples.

General Considerations

The authors have worked on several different implementations of veri-
fication systems before Truss was available. While at a high level veri-
fication systems can be described uniformly, the language used to build
them has a lot to do with how a specific framework is constructed.

SystemVerilog considerations

SystemVerilog is an evolving standard, and vendor compliance with the
current standard is also evolving. However, Truss can be used with
multiple vendors. Although it’s possible to build a “better” OOP-based
verification framework by supporting only one vendor, single-vendor
support would have made Truss a verification novelty. Truss represents
an appropriate cross-vendor SystemVerilog framework that many years
of software and verification experience can create.

SystemVerilog does not have copy constructors, or operator overloading.
However, it does provide object-instance reference counting, and Truss
relies on this by passing around objects liberally. SystemVerilog does

An Object-Oriented Framework 91

Chapter 6: Truss: A Standard Verification Framework

not have a concept of interface versus implementation. It does allow
'include and extern on methods, which Truss uses to create the illusion
of interface files. Truss also uses pure virtual functions to communicate
a code interface.

Not all vendors support static methods, so Truss uses a function in a
package to implement a singleton. SystemVerilog does not allow task
calls in functions, so Truss has a fair number of void functions.

The point of the above is to show that Truss is carefully architected to
minimize the impact of vendor and language constraints, while providing
a basis for verification efforts.

Keeping it simple

92

A stated goal with both Teal and Truss is to avoid unnecessarily compli-
cated code. SystemVerilog has many legacy and new features, but many
times they are not appropriate. It is easy to get distracted with language
techniques and forget that the real goal is to keep the whole team
productive.

For example, implementing a generic interface for a verification com-
ponent, such as a transactor, as a template can be tricky. Sometimes using
a template can be more complicated than simply replicating code.

Sometimes only a convention should be used. An example of this is the
generator concept. One could define a virtual base class, yet the common
methods come down to just start(), stop(), report(), and a few
others. It turns out that this concept of start (), stop (), and so on is
common to a large set of verification tasks, and is represented in Truss
as the virtual base class verification component. However, the con-
crete subclasses are inherited from verification component only if
they use the bulk of the methods. Any smaller subset uses the same named
methods as a convention instead.

In this way, the framework is not warped to fit a generic
class. Even more important, your design is not warped to fit
the generic class.

Truss implements a specific methodology for functional verification. As
in any endeavor to generalize, the terrain is fraught with peril. Never-

Major Classes and Their Roles

theless, as writing code entails making judgments about what is the
“right” decision, Truss attempts to generalize a style of verification.
Deciding on the right balance between generic and specific is a judgment
call for the team. The idea behind Truss is to foster a small, usable,
portable, and adaptable methodology for beginners through experts. As
such, Truss provides an example of the techniques presented in Part II1
of this handbook.

Major Classes and Their Roles

Truss is an implementation of the layers talked about in the Layered
Approach chapter. Consequently, there are only a few top-level compo-
nents—the verification top, the testbench, the test, and the watchdog
timer. Each component has a specific role. These components and their
roles have been architected to allow a large amount of flexibility with a
relatively simple interface. These top-level components (and those the
next level down) are shown below:

Verification Component Hierachy

verification top

ﬂst watchdog

timer
test -
irritator
component
testbench
SV Testbench Features
HDL
chip |

The top-most component is the verification top() program, whose
role is to create and sequence the other components through a standard

An Object-Oriented Framework 93

Chapter 6: Truss: A Standard Verification Framework

test algorithm. (The algorithm is explained in detail in the next section.)
In addition, verification top () initializes all global services, such
as logging, randomization, and the dictionary.

The watchdog timer is a component created by verification top().
This component’s role is to shut down a simulation after a certain amount
of time has elapsed, to make sure the simulation does not run forever.

The testbench top-level component is the bridge between the System-
Verilog verification world and the HDL chip world. As such, the test-
bench’s role is to isolate the tests (and test writers!) from having to know
how transactors, traffic generators, monitors, and so on interact with the
chip. Whether a bus functional model (BFM) writes to registers or forces
wires should not be of concern to the test writer.

In addition, the testbench holds the configuration objects of the chip.
This is needed by the BFMs, transactors, and similar agents to be able
to configure the chip correctly. There is probably a configuration object
for each protocol of the chip. For chips that contain internal functions,
such as direct memory access (DMA), there may be a configuration object
for each function.

The last, but certainly not the least, top-level component is the test itself,
whose role is to execute a specific functionality of the chip. It does this
by using the testbench-created BFMs, monitors, and generators. The test
is responsible for choosing among the testbench’s many configurations
and capabilities and exercising some subset of the chip’s functionality.
In general, the test contains very little code. This is because any code it
contains may need to be used in other tests as well. To support code that
is more adaptable, a test normally consists of several test components,
as will be discussed later. The exception is for directed tests, in which
case registers may be overwritten, specific traffic patters sent, or specific
corner cases exercised directly in the test component.

Key test algorithm: The “dance”

94

The top-level components of the previous section have a complex, yet
necessary, set of interactions. This ensures the maximum flexibility for
a test, while providing a known set of interactions. This is one of the
tricky parts of a verification system. This section discusses this standard
algorithm, which we call the “dance.”

Major Classes and Their Roles

In general, the top-level components are created, randomized, and then
started. Then verification top () waits for the test and testbench to
be completed. This is called the “polite” path. If the watchdog timer
decides that a timeout has occurred, the “impolite” path is taken and the
simulation ends.

The order of these calls can be better visualized on an event diagram, as
shown below. The four columns show the main components. Execution
starts at the top left line, and the arrows represent function calls to the
other components.

The Dance
verification_top() Test Watchdog Testbench
Create | new()
top
objects
Build and | do_randomize()
configure
time_zero_setup()
start() //watchdog only
Main out_of_reset()
test
run N
write_to_hardware()
start()
wait_for_completion()
Test report(“final”)
results
. report(“timeout”)
Timeout
path

An Object-Oriented Framework 95

Chapter 6: Truss: A Standard Verification Framework

96

The first thing that verification top() does is build the global
logging objects. These provide for logging, as well as for shutting down
the simulation after a threshold number of errors have been logged. (See
truss_vout.svh in the index.)

Then verification top () reads the dictionary file (if it exists). This
is to allow the test constraints file to override any default settings put
there during the construction of the test, the testbench, and their subor-
dinate components.

Then, after the global logging objects have been created, and the dictio-
nary read, verification top() allocates the top-level objects. The
test is given a pointer to the testbench, so that it can interact with the
testbench. It is also given a pointer to the watchdog timer, in case a part
of the test wants to force a shutdown or override the
verification top () defaulttimeouts. The watchdogis given a pointer
to an object so that it can call the final report method with a “watchdog
timeout” string prefix.

At this point, all the top-level objects are constructed. As part of their
construction they are expected to have established default constraints.

After initializing the random-number generator, verification top ()
calls test.do_randomize (). Once the test is randomized, then

testbench.do_randomize () is called.

At this point, it is expected that the test and testbench have built their
respective subcomponents and are ready to run the test. The first step is
the time zero setup() method, which is used to force wires and
initialize interfaces prior to bringing the chip out of reset.

As expected, the next step is out of reset (), which is used to bring
the chip out of its reset state and set it for initialization through the back-
door or register writes.

The next step, write to hardware (), is where the BFMs are called to
initialize the chip. This can be done by either the test, the testbench, or
a combination of the two. What is appropriate depends on your situation,
as discussed in subsequent sections.

At this point the system is ready for traffic flow. The start () method
directs the testbench and test to start running. The testbench is started
first, to allow monitors and BFMs to start, followed by the watchdog

The verification_component Virtual Base Class

timer. Finally, the test is told to start (), which generates the actual
traffic.

Next, verification top calls wait for completion() on the fest-
bench. If your design makes the testbench aware of what checkers are in
use, this call waits for the testbench checkers to complete. If not, this
method simply returns.

Then verification top calls the test’s wait for completion(). If
your design makes the test aware of what checkers are in use, this call
waits for them to complete. (This is the style used in the examples.)

At this point, the test is almost finished. The testbench and test are called
to report their final status.

Then verification top() checks to see if any errors were reported.
If none were reported, the test is considered to have passed. It may seem
weak to accept that the absence of errors is sufficient to consider a test
passing. In practice, however, there is no other choice. At the top level,
one must trust that the lower-level objects do their jobs. Note that this
usually means that in-flight data must be weeded out as the checker
proceeds.

Now if the watchdog timer triggers, a different path is taken. The watch-
dog immediately calls the report method on verification top. Note
that the watchdog itself uses an HDL-based timeout, so that if the report
method hangs, the simulation still ends.

The verification_component Virtual Base Class

While the test and the testbench are completely different classes as far
as their roles and responsibilities are concerned, their code interface to
verification top is the same. For this reason a common class was
created. This common class, used as a base for both the test and testbench,

is called the verification component.

The verification component is a virtual base class. As such, it pro-
vides pure virtual methods for the dance described in the previous section.
In addition, verification component provides a constant name and a
logger. The interface for verification component is shown below.

An Object-Oriented Framework 97

Chapter 6: Truss: A Standard Verification Framework

package truss;

typedef enum {cold, warm} reset;

virtual class verification component;

protected teal::vout log ;

protected string name ;

extern function new (string n);

' PURE
' PURE
' PURE
' PURE
' PURE
' PURE
' PURE

virtual
virtual
virtual
virtual
virtual
virtual

virtual

function void do_randomize();

task time zero setup();

task out of reset(reset r);

task write to hardware();

task start();

task wait for completion();

function void report(string prefix);

function string name();

endclass
endpackage

Although verification component is a base for the test and the test-

bench, it is also useful as a base for other objects.

Detailed Responsibilities
of the Major Components

98

The previous sections discussed the roles of the major components and

how they were sequenced to run a test scenario. This section dives down

a level, discussing in more detail the specifications of the major compo-

nents. (Because verification top was discussed in detail in the pre-
vious section, it is not discussed further here.)

Detailed Responsibilities of the Major Components

The testbench class

The testbench class has two main responsibilities. One is to isolate the
test writers from the actual wire interfaces. The other is to provide “one-
stop shopping” for all the generators, checkers, monitors, configuration
objects, and BFMs/drivers in the system. The reason to put all of your
components into a single object is to facilitate the adaptation of compo-
nents into multiple tests. In this way, a test writer can see all of the
possible “building blocks” that are available.

The testbench class can be a passive collection point for all these
components, or it can play an active role in bringing the chip out of reset,
generating traffic, and knowing when the test is done. In theory, only the
global functionality should be handled by the testbench. For example,
the testbench probably should bring the entire chip out of reset, while
the test can bring separate functionality out of reset. In practice, the test
and the testbench share the work.

In general, it is better to let the test or test components control the
simulation. This is because a test or test component can then be adapted
for several different types of tests.

A more active testbench may, as a counterpoint, simplify a large number
of tests in a way that a test base class cannot, because the testbench has
direct access to all the chip’s wires.

Understand that the more test knowledge a testbench has, the more all
tests must act the same or have control over that testbench’s functions.
This can be good or bad. The specific responsibilities for control and
functionality—test or testbench—are, of course, up to the verification
team.

As an implementation detail, Truss provides only a testbench base
class. What verification top builds, however, is a testbench object.
You must provide a testbench.svh. This file declares a testbench
class, which should be inherited from truss::testbench base. You
will probably also have a testbench. sv, which contains the implemen-
tation.

The testbench is passed a helper object, called interfaces dut. This
is because, in SystemVerilog, classes are not allowed to make cross-
hierarchical references. What does that mean? It means that the testbench

An Object-Oriented Framework 99

Chapter 6: Truss: A Standard Verification Framework

can access the chip wires only through an interface. The
interfaces dut class is where all those interfaces reside!

Buteach chip will have different interfaces, so how can we make a generic
program that builds a specific testbench? The answer is to have you write
a function, called build interfaces (), that is called by
verification top. Truss creates the virtual base class.

virtual class interfaces dut; endclass

Then you define a function to build your specific derived class.

function interfaces dut build interfaces ();

Note that the truss testbench_base constructor receives this pointer as
the base class.

virtual class testbench base
extends verification component;
function new (string n, interfaces dut dut);

endclass

In your testbench you must downcast! the interfaces_ dut to recover
the derived class you created in your build interfaces().

interface alu input (
output reg [31:0] operand a,
output reg [31:0] operand b
)i
endinterface
class interfaces alu extends truss::interfaces dut;
virtual alu input alu input 1;
endclass
//MUST be in file build interfaces.svh!
function interfaces dut build interfaces ();
interfaces _alu alu = new ();
alu.alu input 1 = real interfaces.alu input 1;
endfunction
class testbench extends truss::testbench base;

function new (string n,
truss::interfaces dut dut);

I Generally, downcasting is a bad thing, but we cannot think of a better solution
given the context.

100

Detailed Responsibilities of the Major Components

interfaces _alu alu dut;

super.new (top path, dut base);

//Note: Downcast to recover pointer

truss assert (Scast (alu dut, dut base));
endfunction

endclass

The authors generally declare the virtual interfaces of a chip in a file
called interfaces <chip name>.svh, and then put the instances of the
“real” interfaces in a file called interfaces <chip name>.swv.

Finally, these “real” interfaces must be in a module called
real interfaces. This is because some vendors require you to name
all the top-level modules in a simulation, and the truss script uses that

module name.

The authors realize this is a fair amount of structure. The good part is
that you would probably need most of this structure anyway. We are just
providing a naming framework for these methods and classes so that a
generic program and script can be used.

You must implement a function called

build interfaces () ina file called

build interfaces.svh. You must also have a top-level
module called real interfaces.

Watchdog timer

The watchdog timer component is responsible for providing an “impo-
lite” shutdown if the test has executed for too long. The timer has two
timeout mechanisms: one triggers when the watchdog HDL timer trig-
gers, and the other triggers after the first trigger has occurred.!

The watchdog timer uses the dictionary to get its timeout values, which
are sent to the HDL on time zero setup().The start () method starts

' The watchdog timer is simple in theory, but often hard to execute correctly. To
be sure, it must have a clock and a countdown time, but even this basic level
can be problematic. Should you use wall clock time, simulation time, or both?
Should the HDL timer be internal or external? What resolution should it have?
Should the test be able to extend or communicate the expected time of the run?

An Object-Oriented Framework 101

Chapter 6: Truss: A Standard Verification Framework

Test class

102

the timers. The HDL watchdog uses an internal timer. If it were to use a
passed-in clock, that clock may inadvertently be shut off.

Once either timer triggers, the watchdog HDL timer is notified and a
second timer is started. If this timer expires, $finish is called. This
might happen, for example, if there is some code in the report that is still
reading registers, but the chip is unable to respond.1

After the watchdog is notified of an HDL timeout, the report () method
in verification top is called. This allows the test to report which
checkers have completed and which have not, helping to provide a clue
as to why the simulation ran too long.

The watchdog interface must be put in your derivation of
the interfaces dut class. In addition, a real interface
must be created and passed to the watchdog in its
constructor.

The test class is responsible for selecting, configuring, and running all
the appropriate generators, BFMs, monitors, and checkers. It is also
responsible for selecting the configuration of the chip to be used.

While you could directly implement the above responsibilities in the test
class, Truss encourages another style. In Truss the test is intended to
consist of a number of independent, smaller components called test
components. These components are the ones that actually do the work;
the test’s role is to create, constrain, configure, and sequence the com-
ponents, as appropriate for the test at hand. The reasoning behind having
multiple independent components is that this is close to the real operation
of the chip, where each feature is expected to operate simultaneously. In
reality, the chip has common resources that must sequence or arbitrate
the use of features. It is in these common resources where the more tricky
bugs lurk.

I The authors worked on a project where the final report code read the status
registers to make sure that functional area of the chip did not have any errors.
However, when we added a power-down test irritator, the read hung the
system. It took us a while to find the offending code.

Detailed Responsibilities of the Major Components

Using this method, the test’s direct responsibility is to map the features
of the chip (as presented by the testbench’s data members) to a set of
classes inherited from the test component base class. The test would
then add constraints to adapt the test component to the test at hand, as

in the following example:

class ethernet basic packet extends truss::test base;
local ethernet test component ethernet data 1 ;
local ethernet test component ethernet data 2 ;

local pci irritator pci express 1 ;

function new ethernet basic packet (testbench t,
truss::watchdog w);
ethernet data 1 = new (t.e generator 1, t.e bfm 1,
t.e checker 1);
ethernet data 2 = new (t.e generator 2, t.e bfm 2,
t.e checker 2);
pci express 1 = new (t.pci generator 1, t.pci bfm 1,
t.pci_checker 1);
endfunction
task time zero setup();
ethernet data 1 .time zero setup();
ethernet data 2 .time zero setup();
pci express 1 .time zero setup();
endtask
task out of reset(reset r);
ethernet data 1 .out of reset(r);
ethernet data 2 .out of reset(r);
pci express 1 .out of reset(r);
endtask
task write to hardware ();
ethernet data 1 .write to hardware();
ethernet data 2 .write to hardware();
pci express 1 .write to hardware();
endtask
task start ();
ethernet data 1 .start();
ethernet data 2 .start();
pci express 1 .start();
endtask
task wait for completion ();
ethernet data 1 .wait for completion();

ethernet data 2 .wait for completion();

An Object-Oriented Framework 103

Chapter 6: Truss: A Standard Verification Framework

104

pci express 1 .wait for completion();
endtask

function void report (string prefix);

ethernet data 1l.report(prefix);

ethernet data 2.report (prefix);

pci express 1l.report (prefix);
endfunction

function void do_randomize ();

ethernet data 1.do_randomize ();

ethernet data 2.do_randomize ();

pci express 1.do randomize ();
endfunction

endclass

In the above example, the ethernet basic packet test uses three test
components, two of which are identical. It connects up the appropriate
testbench objects and forwards to every test component the following
test calls:

time zero setup (), out of reset(), start(),

wait for completion(), do_randomize(),and.report()

So why do testing in this more complicated manner? In addition to the
previously mentioned idea of simulating close to real-world conditions,
an important reason is to maximize the adaptability of the test compo-
nents. In the example above, we used the same test component for both
Ethernet ports. Also, when the test components take in only the parts of
the testbench that they need, they (1) make explicit what they are using,
and (2) minimize the assumptions on the rest of the chip. This, as will
be highlighted in the single UART example in Part IV, allows a test
component to be reused for other chips that have only a subset of the
original chip’s functionality.

Test components are critical to the adaptability of a verification system.
In general, the test components themselves do not know whether they
are running in parallel with other test components or are part of a series.
Thus, the most adaptable components are these test components, as will
be discussed further in the following sections.

As an implementation trick, verification top builds a test by using
adefinecalled TEST. This trickery, set up by the truss run script, allows
the script to compile in a different test, while leaving the rest of the build

Detailed Responsibilities of the Major Components

image the same for all tests. This allows each test to be its own class
(inherited from test base). This cleverness helps one avoid a bad
experience in the future. Assume that your team had written on the order
of 50 tests, and then a new test was created that required a new subphase
to be added to the dance. Although the other tests did not need this new
method, you cannot add the default method. This is because all the tests
are implemented as a test class. There is only one header test.svh, and
50 different test.sv files. By defining a base class, and then having the
actual test be an inherited class (with a different header file), one can
add methods to the base without affecting the existing tests.

There is one more part to a test that needs to be discussed. Often a test
is made better by the addition of random background traffic. This traffic,
be it register reads and writes, memory accesses, or just the use of other
interfaces, can uncover corner cases, such as bus contention, that would
not be found otherwise.

These background-traffic test components are called irritators and inherit
from the test component class. They differ from the standard test
component in that they continue their traffic generation until told to stop
by the test. Test components, by contrast, decide themselves when they
are done, as determined by specified metrics, such as a stop time or the
number of packets to send. (Irritators will be describe in more detail later
in this chapter.)

With background traffic irritators, the test is written essentially as before.
The exception is that the wait for completion () of the test calls the
primary test components’ wait for completion (). When the primary
componentreturns, the test calls stop_generation () onall theirritators
and waits for them by means of their wait for completion (). Then
the test returns control to verification top. (This is explained further
in subsequent sections and in the examples in the chapters that follow.)

An Object-Oriented Framework 105

Chapter 6: Truss: A Standard Verification Framework

Test Component and Irritator Classes

As discussed in the previous section, test component-based design is
central to a Truss-based test system. The authors have found that sepa-
rating the test scenarios into test components has maximized the adapt-
ability of the system. By using test components and irritators, test writers
have been able to minimize their assumptions and distractions and con-
centrate on exercising the chip. Furthermore, other test writers can adapt
what was done in other functional areas and inherit irritators (if they are
not already present) for use as background traffic.

This section describes the responsibilities and interfaces of the

test component and irritator virtual base classes.

The test component virtual base class

106

The test component is an virtual base class whose role is to exercise
some interface of the chip. As discussed above, this functionality has
traditionally been included in the test. The test component describes
the interface that all concrete implementations must follow.

In fact, you may have several types of test component for a single
interface, for example, a register read/write one, a basic data path one,
and an error case one. The fact that these different exercises implement
the same interface simplifies reasoning about them.

In practice, most test components use a generator and a connection-level
object. Sometimes they may also be given a checker, depending on the
designer’s intent.

The test component classisaverification component, and has all
the same phases. The test component breaks down some of the
verification component methods into finer detail, as one would

expect of a lower-level object.

Below is the interface for the test component base class.

package truss;
virtual class test component
extends verification component;

function new (string n);

Test Component and Irritator Classes

task void start();

task void wait for completion();

function void report(string prefix);
//protected interface

'PURE protected virtual task start ();

'PURE protected virtual task
run_component traffic ();

'PURE protected virtual task start components ();
'PURE protected virtual task do generate();
'PURE protected virtual task wait for completion ();
protected bit completed ;

endclass

endpackage

As before, the methods time zero setup(), out of reset(), and
write to hardware () are provided to allow the test component to
interact with a BFM or driver. Note that a different, but equally valid,
architecture would keep the connection-layer components private in the
testbench and sequence them by means of the top-level dance. This
assumes that the testbench knows what subset of the BFMs, drivers, and
monitors, to start up.

The start () method is used to start the test component’s generator,
BFM, and so on. This method is implemented by a Truss utility class
called thread. A thread class runs another virtual method, start (),
in a separate thread or execution. This allows a test class to do the obvious
thing and just call start () on all the test components the test uses.

Let’s look at the start () method, as it is the main starting point for
an interface of the chip. The start () method runs two methods: a
start components () pure virtual method, and a virtual
run_component traffic () with a default implementation. The idea
behind the start components_ () method is that you call start () on
your generators, BFMs, and so on, as appropriate. (The examples part
of this handbook contains examples of test component.)

The default run component traffic () method calls
do_randomize () (torandomize the test component and its components),
and then calls do_generate (). In your do_randomize () method, ran-
domize the data members that will be used by do_generate () to cause
some traffic to be generated. In your do_generate (), take these data
members and make the appropriate calls to the generators in the testbench.

An Object-Oriented Framework 107

Chapter 6: Truss: A Standard Verification Framework

An AHB example

108

An example might make the roles a little clearer. (Remember that there
are several fully implemented examples in Part IV.) Suppose you are
creating a test component to test an AHB! arbiter. The test component
acts as a master, generating read and write requests to a number of slaves.

The generator in the testbench can generate a burst of reads or writes to
a given slave, using a specific burst length. Assume that the generator
has a channel interface that can take in an AHB transaction object. The
randomize function of your ahb test component might look like this:

task ahb test component::do randomize () ;

burst length = generate burst length (min,max);

is _read = generate type(min type, max type);

slave = generate slave(min slave, max slave);
endtask

The corresponding do_generate () might look like this:

task ahb test component::do generate();
//addresses are picked by the generator
generator .queue burst (
new (burst length , is read ,slave));
done .signal(); //Signals that test component is done
endtask

Notice that by nature these calls are executed in a one-shot manner. That
is, together they perform a single transaction. This is useful to allow an
irritator to inherit from this test component later, to sequence this
pattern any number of times and possibly change the randomization
constraints as well.

So why have two separate methods?

By separating the randomization from the generation phases, one can
inherit different classes that either (1) have different randomization
characteristics (for example, logarithmic distributions of the burst length,
orapattern); or (2) send the data through a filter first, then to the generator.

I AMBA (Advanced Microcontroller Bus Architecture) high-performance bus.

Test Component and Irritator Classes

So now that the transaction has been generated, what should the
wait for completion () method do? Because the generation is occur-
ring in another thread, there should be a condition variable to commu-
nicate when it is done.

So the code might look like this:

task ahb test component::wait for completion ();
done .pause() ;
endtask

Test-component housekeeping functionality

The test component class also provides a basic housekeeping bit that
tracks when you return from the wait for completion () method.
This allows the report () method to determine whether you have con-
sidered the work of the component to have been completed or not. This
can be very useful in a timeout situation, to see which components have
not completed.

What you decide to do in the wait for completion () depends on
how you view your test component. One view is that it is a traffic
generator only, which can complete when the generation of traffic has
been queued. It is then up to the testbench or test to determine when the
chip has processed all the data. This will most likely involve a checker
or monitor.

Another view is that your test component represents a generate and
check path through the chip. In this case, the completion of
test component signifies the completion of the entire exercise. (The
examples in this handbook use this view.)

As always, the team must decide which view is better for
their project.

An Object-Oriented Framework 109

Chapter 6: Truss: A Standard Verification Framework

The irritator virtual base class

110

As discussed above, the test component is set up as a one-shot traffic
generator. This works for tests that are directed, and for tests where the
completion event is predetermined—that is, tests that know before the
start () call what the end conditions are.

However, sometimes it is not good design to have the test component
determine when completion is achieved. This is the case when, for
example, you want to achieve a certain metric, and the measurement is
not appropriate information for the test component.

For example, you may want to send 100 bursts of some AHB traffic.
While this could be included in the ahb test component, you might
not want to measure completion by 100 bursts all the time. Instead, you
might want to write a test that looks at the number of hits each slave
device gets, and stop the test when all slave devices have been targeted.
As another alternative, you might want a test to run until some goal is
met; a goal could be any of the previous goals, or could involve some
internal state in the arbiter.

The irritator, inherited from test component, is used for situations
such as these. The interface is shown below.

package truss;
class irritator extends test component;
extern function new (string n);
task stop generation(); generate = 0; endtask
extern virtual protected task start ();

extern virtual protected task
run_component traffic ();

extern virtual protected bit continue generation();
'PURE virtual protected task inter generate gap();
local bit generate ;

endclass

endpackage

The irritator overrides the run traffic () method of the
test component base class. It sets up a loop, calling the one-shot
randomization and generation in the test component’s
run_component traffic () methods. The implementation is shown
below.

Test Component and Irritator Classes

task void irritator::run component traffic ();
while (continue generation()) begin
super::run_component_traffic_();
inter generate gap();
end
endtask

The method continue generation() just looks at a bit, which is
toggled to 0 by a call to the stop _generation () method. This allows
an external class to stop the continual loop of randomization and gener-
ation.

Note that there is a new virtual method in the irritator class, called
inter generate gap (). Because the irritator is continually generating
traffic, you might need a delay mechanism to prevent the generator from
flooding the chip.

There are many ways to get this delay. For example, in one solution the
generator and attached BFM/driver could execute the generate request
as soon as it is called and thus take simulation time. In another solution,
the way to get a delay would be to have a fixed-depth generator and BFM/
driver channel.! This would put back-pressure on this generate loop. In
still another solution, the generator could have a delay in clock cycles
before returning.

Any of the above solutions is acceptable, but there is yet another choice.
That option is to have the irritator itself provide the delay mechanism.
The inter generate gap () is a virtual method allowing you to imple-
ment an irritator-based delay. This allows the irritator to decide on the
throttle mechanism. Different subclasses could implement different pol-
icies. For example, an irritator could wait for a variable number of clock
cycles. Another example would be to measure some parameter on the
checker (such as packets in flight).

As always, the team must decide what is appropriate.

I This method is supported in Truss’s channel class.

An Object-Oriented Framework 111

Chapter 6: Truss: A Standard Verification Framework

112

Using the irritator

The irritator continues this generate/wait loop until a
stop_generation () iscalled. But how do you decide when to stop the
irritator? The answer, of course, is “When the test reaches its goal.” One
goal could be that the “main reason” for the test has been achieved. For
example, you can have the main goal be a test component, perhaps one
that generates a fixed, but randomized, number of packets through a
particular chip interface. The global goal in this case would be for the
test component to achieve completion. Here is how the test code might
look:

task noisy packet test::wait for completion();
basic packet exerciser .wait for completion();
//'for each is a macro from the quad uart example
'for each(irritators , stop generation());
'for each(irritators , wait for competion());
endtask

Ignoring the nontrivial constraining, selecting, and creating of the test
component and irritators, what is accomplished in a few lines of code is
a shutdown sequence that is powerful, while being a fairly simple idiom.

Note that a verification team could decide to use only irritators in their
implementation. In that way, when to stop the test can then be determined
by looking either at a checker or possibly at elapsed simulation time.
The complex part of the test would then become the randomization and
selection of irritators. The authors have worked on a variant of this
methodology, and the resulting verified chip was a first silicon success.

Summary

Summary

This chapter introduced Truss, an open-source application framework.

We revisited the benefits of an OOP language such as SystemVerilog.
We also stressed the need to keep things simple despite the features of
this language, to avoid writing code that is unnecessarily complicated.

We talked about the key algorithm of verification, which the authors
called the “dance.” We showed how the dance is used by the
verification top program to run a test. We discussed the roles and
responsibilities of the test, testbench, and watchdog timer, the main parts
of the top-level dance.

We discussed the verification component virtual base class, which
provides pure virtual methods for the dance.

We then discussed the test component and irritator classes, includ-
ing their responsibilities and interfaces.

An Object-Oriented Framework 113

114 o o o o o o o Hardware Verification with SystemVerilog

Truss Flow

Expensive solutions to all kinds of problems
are often signs of mediocrity.

Ingvar Kamprad, founder of IKEA

Have you ever bought and assembled a piece of furniture from IKEA?
In the store most of their furniture looks very simple, but when you get
it home and try to assemble it, you realize that it’s built from several
smaller and often confusing pieces. Even with IKEA’s famous assembly
instructions, showing the “intent” for each piece graphically, assembly
can still be confusing. Imagine how hard it would be without instructions.

The authors have had to learn many verification environments through
the years, and this has often been a very confusing experience. What
seems like a great concept with a well-defined structure at a high level
of abstraction is often obscured by troublesome details when you first
try to implement it. Many times the confusion is increased because of a
lack of description regarding how the high-level ideas are actually imple-
mented. To help reduce the confusion around Truss, this chapter describes
the “dance” in more detail.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 115

Chapter 7: Truss Flow

Overview

This chapter looks at how the “dance” described in the preceding chapter
is actually implemented. It shows the order in which each method is
called, and describes the files to find the method, or its base. The chapter
then looks at the structure for the major components of Truss.

First to be described is verification top, the top-level program of
Truss and the base of the “dance.” Following this is a description of the
methods, and their class, through which files are called for each step.

Then the test component is described. This component follows a dance
similar to that of verification top, but for a different set of classes
and files.

The irritator class is described next. While similar to a
test component, irritators have some unique methods worth pointing
out.

The last part of the chapter talks about steps that need to be taken to build
a new Truss based project, by taking the more-abstract description of
classes and applying them to the first few tests in a new project.

About truss_verification_top.sv

116

When the simulator executes a program, control is passed to the initial
block in the verification top program in verification top.sv
under the truss/src directory. In this handbook we refer to this function-
ality as the “dance.” It is this program block that interacts with your top-
level components: the test, the testbench, and the watchdog timer.

Let’s look at the dance with respect to the code you have to write. This
is illustrated in the figure on the following page. A square box indicates
that the method has a defaultimplementation, and a rounded box indicates
it needs to be defined for your project.

About truss_verification_top.sv

The Dance - Detailed Flow

verification_top()

Ctestbench::new(string, buiId_interfaces()))

Build objects,

‘ watchdog::new(std::string) ‘ apply constraints

your_test::new(testbench*, watchdog*, std::string)

Perform top-level
randomization, for example,
chose interfaces or features
to be tested

your_test::do_randomize()

W [S W O <

(testbench: :do_randomize()>

watchdog::start()

< testbench::time_zero_setup() >

Install safety net

Pull wires/registers up or
down before releasing the

’ watchdog::time_zero_setup()
reset line

(your_test::itime_zero_setup())

Hold the reset line for
the minimal amount,
then release it. Return
when registers can be
accessed

(testbench::out_of_reset())

‘ watchdog::out_of_reset() ‘

(your_test::out_of_reset() >

Push the configurations

C testbench::write_to_hardware()) down to the hardware

[watchdog::write_to_hardware() J

(your_test::write_to_hardware() >

testbench::start()

your_test::start()

Exercise the
chip

C testbench::wait_for_completion() P til the check
ause unti e checkers

are finished

U/

(your_test::wait_for_completion()

C testbench::report(“Final Report”)

o/

Print which components
have completed

C your_test::report(“Final Report”)

o/

Legend
testbench $PROJECT_HOME/verification/testbench/top/testbench.sv

your_test $PROJECT_HOME /verification/tests/your_test.sv

watchdog $TRUSS_HOME/src/watchdog.sv

An Object-Oriented Framework 117

Chapter 7: Truss Flow

118

The watchdog class is already written and should be sufficient for most
purposes. (We will not discuss the watchdog timer’s methods, because
they are relatively straightforward.) You’ll have to write the test and
testbench classes.

You will have to write a build interfaces () function, along with the
real interfaces module that creates the actual chip interfaces. The
object returned from the build interfaces () function is given to the
testbench constructor.

In the testbench constructor, instantiate your generators, checkers,
BFMs, and so on. (This assumes that your team has decided to put these
objects in the testbench rather than in the test components.) Then add
your constraints by using the dictionary. These constraints will be picked
up by your generators and configuration objects to guide the randomiza-
tion. Initially, you will probably have no constraints.

The test’s constructor will create all the test components and irritators
that it needs.

In the testbench::do_randomize () method, randomize your local
variables and then call do_randomize () on lower-level components, as
appropriate. Your testbench may have configuration objects for each
protocol or feature that is used to configure the chip. You may or may
not want to use the built-in SystemVerilog randomize () method.

The test::do_randomize () method is similar, in that the test random-
izes each test component it owns. In addition, the test may select some
subset of the components and irritators it owns.

The testbench::time zero_ setup () methodis where you drive wires
prior to letting the chip out of reset. You may need to wait for the PLL
to lock, or set up “sensor” pins on the chip in this method.

The test::time zero setup () method usually just calls all the active
test component’s time zero setup (). Thisis to allow test components
that have a “plug-in” behavior, such as USB and PCI Express, to perform
their initial training. (To use this method is a judgment call, as you may
want to bring up a protocol later in the simulation.)

The testbench: :out_of reset () method will bring the chip to astable
state (for example, one that can accept register access). If the team so
decides, you could use test::out_of reset() to reset the chip.

The Test Component Dance

The write to hardware () methods in both the test and the testbench
are where you performregister writes to move your selected configuration
to the chip. The test’s write to hardware () method usually just calls
the same named method on all its test components. This is because the
actual register writes will occur in the BFM or driver. One exception is
when you are writing a direct test, and it’s easier just to write the registers
at the test level.

The testbench::start () method, if it knows which protocols and
features are in use, starts up all the BFMs, monitors, and drivers. Depend-
ing on your architecture, it may also start the generators and checkers.

The test::start () method usually just calls the start () method on
all its owned test components.

Thewait for completion () methodsinthe testand testbench are used
to pause the verification system until the test is finished. Although there
are many ways to do this, the examples in this handbook just allow the
checkers to say when the test is completed.

The report () method in the top-level objects is where they report their
status. For the testbench, this method is usually appropriate for reporting
the configurations selected; for the test, it usually just calls the test
components.

That’s it. This may seem like a lot of methods to write, but you probably
do not need to perform tasks in all the methods. Later in this chapter, we
will talk about the order in which you might want to implement these
methods.

The Test Component Dance

Did you notice that most of the time the test just called the same named
methods on the test component?1 That’s because verification has a fractal
structure, with repeated patterns. The top-level dance is repeated, with
a few changes, in the test. This time, instead of verification top()
calling the steps, the test does. The test component also plays a role,

I Okay, so maybe remembering back to Chapter 4 is not that easy.

An Object-Oriented Framework 119

Chapter 7: Truss Flow

subdividing the start () method into several lower-level methods, as
shown in the following figure.

Test Component Dance - Detailed Flow

your::new(generator, bfm, checker)) }The test builds

your test component

your::time_zero_setup())

Performs the same
your::out_of_reset()) function as the
top-level components

your: :write_to_hardware())

[test_component::start() ‘

[test_component::start_() ‘

i Start your generator,
(your::start_components_()) BEM yan d ghecker

‘ test_component::run_component_traffic_() ‘

/

(your: :doﬁrandomize()) (your::do _generate())

Set up and run your
“main traffic’ method

test_component:wait_for_completion() ‘

Il

Cyour_test_component:wait_for_completion_ ()>

Wait for your
checker to complete

test_component::final_report (“Final Report”) ‘

Legend

you must implement) $PROJECT_HOME/verification/test_components/your_test component.sv

$TRUSS_HOME/inc/
truss_test_component.svh
—» called from the same named method in test

[base implementation provided ‘

The run_component traffic_ () method has a standard implementa-
tion, which calls do_randomize () and then do generate (). The
do_randomize () method has the same purpose it had for the top-level
components: to randomize your random variables. The next method
called, do_generate (), picks up the results of the randomization and
interacts with the generator to exercise a feature or a protocol of the chip.

Now, it may seem strange that these methods are implemented like this.
However, the idea is to separate the various concerns of the test compo-
nent: starting, randomization, and generation. This, as will be discussed
in Part III of this handbook, creates more-adaptable and less-brittle code.

120

The Irritator Dance

The organization also sets up the irritator, making the transition from a
fixed test to an irritator relatively painless.

The Irritator Dance

The irritator is an inherited class of test component. Its purpose is
to generate background “noise” while the test concentrates on some
specific area of the chip. In some sense, using irritators is a way to emulate
the real world, where many of a chip’s features and protocols are used
simultaneously.

Sowhatdoesan irritatoraddtoorchange fromthe test component?
Only one method is changed, and two methods are added. All these
changes involve the new run traffic () method, shown in the figure

below.
The Irritator Dance - Detailed Flow
from your_test::start() ‘
‘ test_component::start() ‘
[test_component::start_() \
> Start your generator,
your::start_components_() BFM,yand gheoker
‘ irritator::run_component_traffic_() ‘
(P >
til irritator::sts i Called by test
vl o« until irritator::stop_generation() alled by tes!
test_component::run_component_traffic_() ‘
. Set up and run your
your::do_randomize()) | your::do_generate() “main traffic” method
v
(your::interfgeneratefgapf(D > Pause the generate loop
Legend

you must implement) $PROJECT_HOME/verification/test_components/your_irritator.sv
you may implement | $TRUSS_HOME/inc/test_component.svh

An Object-Oriented Framework 121

Chapter 7: Truss Flow

The irritator overrides the run component traffic () method
from the test component base, and calls the base class
run_component traffic () method in aloop. This is the nature of an
irritator: it just keeps on going until told to stop. The method that
stops the loop is stop generation (), which is usually called by your
test once the main feature or protocol has finished being tested. This will
be shown in detail in the Part IV of this handbook.

One method that you will have to implement is
inter generate gap (). This method may be empty, for a couple of
reasons.

m Your channel has a limited depth, and this limit is used to apply
back-pressure to your system.

m Your generator has a built-in delay of some form.

In this handbook we use the checker to throttle the system—because we
want to keep a certain amount of data in flight, and the checker is the
only agent that knows what has been generated and what has been
received. (The chip can handle an unlimited number of back-to-back
transactions.)

That’s all there is to building an irritator. Note that you will probably
start with a test component, and then evolve it into an irritator. It will
probably be many weeks into your project before the first irritator is
built, but for coverage and finding congestion bugs, irritators are a good
choice.

In fact, your first test will probably be even more rudimentary. This first
test is the focus of the next section.

Compiling and Running Tests

122

The sections above described the main building blocks of Truss. The
following chapters, as well as later examples, will show how these still
somewhat abstract concepts get implemented for real projects. However,
before we start looking at more concrete examples, there is one more
problem to consider: that of compiling and running a verification envi-
ronment.

Compiling and Running Tests

All verification environments need some type of run script to compile
and build both the RTL and verification code. In a large project this is
not a simple task, because one must track a lot of code, as well as many
tools and options.

A goal for Truss is to provide a production-grade run script as open-
source components. At the moment, a run script is provided. They are a
good starting point for a run script and provide enough functionality to
handle the examples in this handbook. It is the authors’ hope that through
community effort, these scripts can be fleshed out into something better.

The truss run script

The truss run script controls which files are compiled and run. It is
written in Perl and has a number of switches that control its actions. The
script will first compile all the SystemVerilog testbench files, and then
launch the simulation. After the simulation finishes, the script checks
the status of the test run. (This script is used to build and run all the
examples that are available at www.trusster.com.) The script is located
at $TRUSS_HOME/bin/truss).

Truss uses some environment variables to “understand” its environment.
By using environment variables (instead of . tool rcfiles, for example),
the system’s assumptions are both obvious and flexible. Truss uses only
a small number of environment variables, as listed below.

Variable Function

SIM Simulator name (such as ncsim, mti, aldec, or vcs)

SIMULATOR HOME Path to the simulator install area

TEAL HOME Path to Teal’s source files
TRUSS HOME Path to Truss install area
PROJECT HOME Path to top of the current verification project

The file named setup in each of the bin subdirectories of each example
has default values for the TEAL_HOME, TRUSS_HOME, and
PROJECT_HOME environment variables. You’ll need to set SIM and
SIMULATOR_HOME as appropriate for your environment.

An Object-Oriented Framework 123

Chapter 7: Truss Flow

Switches

The truss run script has a number of switches to control its execution.
Below is a table that expands on descriptions of the most important

switches.

Switch Function

--help Prints longer help message

--test <test_name> Runs the SPROJECT _HOME /testcases/<test name>
test.

--clean [options] Cleans appropriate selection of the system. Default
selection is USER. The following options are available:
LOGS - Deletes simulation log files
HDL - Deletes user-compiled HDL code
ALL - Deletes all of the above
This switch can be repeated (--clean CPP --clean HDL)

--simulator <SIM> Selects appropriate simulator from supported list. If
switch is not used, then run script reads $SIM. If neither
$SIM or --simulator is used script will fail.

--seed <seed value> Sets random seed to integer <seed value>

--run <number> Runs the selected test a number of times

For a full description of all switches from a command line, run the
following:

STRUSS HOME/bin/truss --help

124

The First Test: A Directed Test

Using “-f” files

As is customary in the HDL coding world, a file is used to help build the
objects. Truss uses a file called hdl paths.vc, which is located in the
testbench subdirectory. Almost all of the directories in the examples
include an hdl paths.vcfile, which lists the files used in that directory.

The hdl files.vc for a basic testbench is shown below.

+incdir+$PROJECT HOME/rtl/uart

$PROJECT HOME/rtl/uart/uart transmitter.v

-f SPROJECT HOME/verification/vip/hdl paths.vc

-f SPROJECT HOME/verification/test components/hdl paths.vc
$PROJECT HOME/verification/testbench/top/interfaces.sv

The first line adds the rt1 area to the include path. The second line
brings in the rt1 source (there will be more than one of these lines). The
next lines direct the compiler to start processing commands from the vip
and test components area. The last line brings in the real interfaces.

Of course, your hdl paths.vc file will be different, but it probably
follows this same format.

The First Test: A Directed Test

Because starting something new is not always easy, this section helps
make the process easier by addressing how a first test can be written
using Truss. This section concentrates on the steps you need to do, and
how atest can be built up from scratch. The next chapter shows a complete
first example and focuses more on the flow.

Your first test will probably be a simple directed test, with a
test component that does not have a generator and possibly not even
a checker. It will probably interact directly with the BFM or driver.

Focus your initial efforts on the driver and the BFM. Write a “first cut”
at the driver class, making it have the methods that seem right to you.
You may or may not need a monitor, depending on the protocol or feature
to be tested.

An Object-Oriented Framework 125

Chapter 7: Truss Flow

126

Define your interfaces to the chip. Then make a module called
real interfaces and create the interfaces. Write a class that contains
virtual interface and build that class in build interfaces.

Next, create a testbench that includes that driver/BFM and think about
how to get clocks to the chip and get it out of reset.

Now make a test class and get the whole thing compiling. Before moving
on to connecting the test to the driver with a test component, make sure
the chip is cleanly out of reset, as this can be done by means of the
testbench’s out of reset () method.

The next step is to make a simple test component. This component
will probably just be a directed exercise, with perhaps a few reads and
writes or just a few calls to the driver. Note that you may use the
test component’s pre-implemented methods if you are comfortable
with them, but for a first test it might be better just to override the start ()
method directly. This is because that’s easier than remembering where
to put your randomization and traffic-generation code.

If there is any configuration, use the chip’s default configuration. Don’t
try to randomize anything yet.

Doing the checking can be tricky, so let’s worry about that last. We’ll
probably be looking at waveforms for the first few days anyway.

Now build a test that has your test component as a data member.
Initially, have the test call the same named methods on your test compo-
nent.

Note that the wait for completion () method probably just returns,
if you implemented the start () method. However, if you used the
do_generate () method of the standard test component, you’ll want
totrigger a condition variable at the end of your do_generate (). Then,
the wait for completion () would just wait for the signal to be trig-
gered, as shown below.

class your test component;
//...your other code here...
local teal::latch done ;

endclass

Then, in the last line of the your test component::do generate ()
method, do this:

The Second Test: Adding Channels and Random Parameters

task your test component::do generate ();
//...your directed exercise code here...
done .signal();

endtask

Then your wait for completion () would look like this:

task your test component::wait for completion ();
done .pause ();
endtask

That’s it! You have created your first Truss-based test.

The Second Test:
Adding Channels and Random Parameters

ELINT3

Engineers count “one,” “two,”—and then “many.” This is because only
the first few times they use a technique are significant. After that,
everything looks like “many.” By writing the first test, we’ve counted

“one.” Now we will count “two.” The next section will cover the “many.”

In this, the second test, we’ll get more sophisticated. We’ll add the agent
layers and also add the generator and checker. These are the steps you
need in order to create more advanced, randomized tests. You will
probably create several directed tests before you need these additional
features, but because this is a book we need to keep moving along.

Remember that the generator and monitor generally have pure virtual
methods to communicate the results of their work. We’ll add our agents
to these methods. There will be an agent for the generator, the driver/
BFM, the monitor, and the checker. Why all this complexity? Because
there are many interconnection techniques, each one involving some
architectural trade-offs. These trade-offs are talked about at length in the
OOP Connections chapter in Part III of this handbook.

To make the connection between the agents, we’ll use a Truss channel.
So let’s digress a bit and look at a channel.

An Object-Oriented Framework 127

Chapter 7: Truss Flow

The channel pseudo-templated classes

128

Verification systems have a lot of producer/consumer relationships. For
example, a generator can be considered a producer and a BFM considered
a consumer. However, it is a good idea to minimize the knowledge and
assumptions of the code interface between these two loosely cooperating
objects. One way to decrease the coupling between these components is
to use an intermediary object. An intermediary object allows the two
communicating objects to be anonymous or separated in time. The con-
cept behind this object is called a pipe, mailbox, or channel. Truss uses
the term channel.

The channel class provides the storage for the actual data, as well as
the signaling and mutual-exclusion mechanisms. In addition, channel
also supports a depth concept, for designs that want to implement back-
pressure in that way. The code interface for a channel class, as well as
the base classes, are in /truss/inc/truss channel.svh in the code
that is available at www.trusster.com.

Ideally, the channel class would be parameterized on the type of the
object in the channel. However, not all vendors support parameterized
classes, so the authors implemented the channel class on an integer type.
This is one of those cases where you just have to copy and paste.

The channel class also provides for other channel objects to be attached
to a channel. This allows the data of one put () to be replicated across
many channels. The common use for this is when a generator creates a
data item and both the checker and BFM should get the data. It is also
useful if there are multiple listeners to a channel, such as in an Ethernet
broadcast, or where there are multiple monitors for a data protocol.

Note that truss sends the data to the listeners after the put has succeeded
for the “main” connection. This is to allow the policies of the main
interconnect to throttle the listeners receiving the notification.

Note also that truss does not explicitly copy the data. This is because
the data in channels of integer types is copied and object pointers are
not. In general, the authors have found that it’s not necessary to copy the
data, as the downstream consumers usually act as readers only.

The Second Test: Adding Channels and Random Parameters

Building the second test

Now that we have channels, let’s use them for the agents. This section
is a bit high level, because every situation is different. We’ll give general
direction, but after you read this chapter, take a look at the next chapter
for a first complete example.

Let’s say that you are working on a chip interface called my interface.
You might have a generator that looks like this:

typedef class my data;
virtual class generator;

task do _generate(); //make one, then call
//done generate

'PURE virtual task done generate (my data d);

endclass

We are concerned with the done generate () method. This is a pure
virtual method, so we must implement it in our inherited class. Let’s
assume we want to add a channel as the connection policy, like so:

'include "generator.svh"
'include "my channel.svh"//cloned code from truss channel
class generator agent extends generator;
local my channel out ;
extern function new (my channel out);
task done generate (my data d);
out .put(d);
endtask

endclass

By building a generator_ agent, we have abstracted how the generator
gets the created data to the driver/BFM.

A similar situation exists in the monitor:

typedef class results;

virtual class monitor;

extern function new (virtual my interface mi);
task start();
//the connection method
'PURE virtual void data received (results);

endclass

An Object-Oriented Framework 129

Chapter 7: Truss Flow

And likewise for an agent for the monitor:

'include "monitor.svh"
'include "results channel.svh"
class monitor agent extends monitor;
local results channel out ;
extern function new (results channel out);
virtual task data received (results r);
out .put(r);

endtask

endclass

But what about the other side of the channels? These objects are the
driver agent and checker agent, respectively. Their job is to take
the data out of a channel and act on the data.

Remember, we are discussing channels here because that’s how we
wanted to implement the agent layer. This could have easily been a more
generic producer/consumer model, or an event-driven method, butimple-
ment what feels correct for you. (All the examples in this handbook use
channels.)

Here are the classes for the driver and checker and the inherited classes
for their agents:

class driver;
extern function new (virtual my interface mi);
extern task send data (my data d);
endclass
'include "data channel.svh"
class driver agent extends driver;
local data channel drain_ ;
extern function new (data channel drain);
//must have a start to drain the channel
task start ();
fork
forever begin
send data (drain_.get());
end
join none
endtask
endclass
class checker;

extern task check data (my data d, results r);

130

The Second Test: Adding Channels and Random Parameters

endclass
'include "data channel.svh"
class checker agent extends checker;
local data channel generated ;
local results channel checker in ;
extern function new (data channel generated,
results channel checker in);
task start();
//Check the data!
fork
forever
check data(generated .get(),
checker in.get());
join none
endtask

endclass

The authors realize that there is a lot of code to look at, but just skim it
over to get the general idea. The general technique is to inherit a class,
add a channel, and append _agent to the name.

After the agents have been built, they should be added to the testbench.
The testbench holds the generators, drivers, monitors, and so on. The
test, on the other hand, holds the test components.

Building the second test’s test_component

The test component is relatively straightforward. A test component
constructor takes in the parts of the testbench you need. Remember, the
entire testbench is not taken as a parameter, because then we would have
to make assumptions about the name of the parts we needed. Also, by
taking in only the parts we need, several of our test components can be
used in the same chip.

The most likely candidates for the constructor’s parameters are the
generator, the driver, and the checker.

The rest of the test component usually just forwards its calls to the

appropriate objects. An example test component is shown below.

typedef class bfm;
typedef class generator;

typedef class checker;

An Object-Oriented Framework 131

Chapter 7: Truss Flow

'include "truss.svh"
class a_test component extends truss::test component;
local generator generator ;
local bfm bfm ;
local checker checker ;
extern function new (string n,generator g,
bfm b, checker c);
virtual task time zero setup ();
bfm .time zero setup();
endtask
virtual task out of reset (reset r);

bfm .out of reset(r);

endtask
virtual task do randomize (); /* next section */;
virtual task write to hardware ();

bfm .write to hardware ();
endtask
protected virtual task do_generate ();

generator .do generate ();

endtask

protected virtual task wait for completion ();
checker .wait for completion ();

endtask

protected virtual task start components ()
bfm .start(); checker .start ();

endtask

endclass

Although your actual test component will be a bit different from the code
above, the general form will probably be the same.

Adjusting the second test’s parameters

132

As soon as you introduce randomization into a test, you’ll probably want
some knobs to control the randomization. Sweeping most parameters
through an entire integer range would chew up a whole lot of simulation
time. Besides, it’s probably either (1) not interesting, or (2) unacceptable
to the register associated with the integer.

A knob is a technique that uses other variables to control the range of a
random variable, either directly or indirectly. In this example we’ll

The Second Test: Adding Channels and Random Parameters

concentrate on controlling the random variables directly. (The examples
in the handbook use the Teal dictionary feature to pass parameters from
a number of sources to the method that will use the knob variables.)

For example, consider a test for a CPU. Assume that a cpu_generator
class has a send one operation() method that is called by a
test component to tell the cpou_generator to create one random oper-
ation. The generator is guided by dictionary variables. It is best to put
the variables to randomize in a separate function at the top of the source
file, because the seeding depends on line number. That way, the sequence
of values selected does not change if the code below is reorganized. Of
course, new random values chosen will be different for each master seed.

Here is an example function for generating the operand a variable of
a CPU operation:

class cpu_generator;
local uint32 min operand a;
local uint32 max operand a;
local function uint32 get operand a(uint32 min v,
uint32 max v);
return Surandom (min v, max v);

endclass

In the cpu_generator: :new (), the following lines could be used:

min operand a =
dictionary::find(name_ + " min operand a", 0);
max operand a =

dictionary::find(name_ + " max operand a", ~0);

In the cpu_generator::do_randomize (), the following line would be
used:

operand a = get operand a(min operand a, max operand a);
This same style is used for the other operand and the operator variables.

Now SystemVerilog does have a randomization feature. Later examples
will show how you might use them. Be careful, though—randomization
tied to the object and its hierarchy can be cumbersome.

An Object-Oriented Framework 133

Chapter 7: Truss Flow

134

So who sets the knobs? There are four ways:

m Use the default specified in the dictionary find() call as the
second parameter.

(] Put the knob value on the command line.
m Use a knob configuration file.
or

n (Finally) Write code to use the dictionary put () call, which is
the mechanism used in our example.

Note that because the Teal dictionary is used, both the command line and
the knob file can be added later without the need to modify any of the
example code.

The test constrains the test component with respect to the number of
times the generator is called. Of course, this specifies the number of
operations sent to the arithmetic logic unit (ALU). The code is shown
below.

teal::dictionary put(test component .name +

"

_min operations", "4",

teal::dictionary default only);
teal::dictionary put(test component .name +
" max operations", "10",
teal::dictionary default only);

Note that the name of the test component is used. This allows the test
to pick any name for the test component and still have the code work.
It also provides for different parameters for different instances of the

test component.

However, be careful with the spelling of the knob variables. They must
be spelled the same in both the find and the put routines in order to
make a connection.

Now that the randomization and knobs are connected, we have completed
writing the second test. In some ways, this test is rather sophisticated. It
uses the Truss framework, and adds agents by using channels to connect
the wire-layer classes to the transaction-layer classes.

The testbench created and wired up the generator, driver, monitor, and
checker. The testbench can bring the chip out of reset and start the
monitor.

The Remaining Tests: Mix-and-Match Test Components

The test itself is rather reasonable. It creates and connects the test
component to the generator, driver, and checker in the testbench.

The Remaining Tests:
Mix-and-Match Test Components

So now what do you do after creating this second, more-sophisticated
test? You do what we verification engineers always do—create more
tests! As these tests are being written, new test components will also be
created, some of which could be used in several tests. Deciding which
test components to adapt to different tests is the major activity (besides
writing more tests) after you have written the first two tests. This is the
“many” count that we talked about earlier.

Of course, you’ll be doing other test-related activities, such as adding
randomness to the existing tests and looking over your verification test
plan to make sure you know when you’re done.

And how do you go about adapting a test component from one test into
another? You could just put the new test component in the test and wait
until both of them are completed. However, as explained in the Truss
Basics chapter, there is another way: use the Truss concept of irritators,
and warm over, or “recrystallize,” the existing test component to an
irritator.

Converting the test components to irritators usually justinvolves deriving
the existing test component with the truss::irritator component.
Then, the appropriate methods will be overridden and the only method
you have to write is inter generate gap_ (). There are many ways to
implement a gap, from the simplest (pausing a number of clock cycles),
to the more complex (using back-pressure and bursty traffic). If the
checker were inherited from Truss’s checker, you can also just wait for
generated data to be checked.

This process of writing a new test continues for all the rest of the features
and protocols of the chip. Remember, the more irritators a test has, the
more likely it is to model what actually happens when the chip design is
realized in silicon.

An Object-Oriented Framework 135

Chapter 7: Truss Flow

Summary

136

This chapter tried to clear the fog of how to go about using Truss. We
started with a review of the top-level dance, and then showed that the
dance also existed in other layers of the system.

We looked at the tools provided by Truss, which is the truss execution
script.

We covered writing the first test, concluding that it will probably be a
directed test. Then, we took the test up a notch, adding connection agents
to the generator, driver, monitor, and checker. We introduced the Truss
channel as the interconnect technique, but noted that there are many other
techniques.

We looked a bit at control knobs, a technique for passing parameters to
constrain randomization. (There are many techniques for constraining
random-variable generation.) This chapter showed how to harness Teal’s
dictionary to hook up bounds for randomization.

We finally discussed what to do after the second test. The idea is to write
more tests for that protocol or feature, and also test the rest of the chip.
The key part of writing more tests is to keep an eye out for what you can
“steal” (rather, “adapt”) for other tests. By creating irritators, you can
use the functionality of other tests as background activities. In this way,
the chip is stressed more—and more faults are found prior to production.

Truss Example

C HAPTER 8

I know that you believe you understand what
you think | said, but I'm not sure you realize
that what you heard is not what | meant.

Robert McCloskey

Coding is tricky, because we take the great ideas, techniques, and
trade-offs and actually make decisions. We put fingers to the keyboard,
and decisions are made and trade-offs are fixed in code. Furthermore,
learning a new technique only makes the coding task more difficult. An
example, or several examples, can help put the technique into perspective.

This chapter is the first example of how to use Teal and Truss in a
verification system. It’s useful to build and run some example code when
learning something new. So download and install the code from
www.trusster.com and noodle around with it a bit. You can add print-
outs and change the code a bit.

If you want, use this chapter as a guide to some of the more interesting
parts of the code examples provided. This chapter is not quite a map to
the “homes of the movie stars.” Instead, it is more like a mariner’s map.
It helps you navigate in tricky waters.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 137

Chapter 8: Truss Example

Overview

This chapter provides a first complete example of using Truss, where
you can actually compile and run the code. The code is not as complex
as what you would encounter in a fully featured chip. However, all the
main parts are here to consider. The source files may seem silly or overly
complex for the chip we are trying to test, but we are trying to demonstrate
how to structure a verification system for a real project. Your chips will
have plenty of complexity to manage.

This chapter does not walk through every code file. We are all capable
ofreading code. What it does instead is look at some of the more important
aspects of the verification system.

Directory Structure

In order to help you navigate the source files, it’s good to show the main
directories that comprise a Truss-based system (shown below). We’ve
also included only the main files we will be working with.

Directory Structure

l | l l

truss j [rtl] [results] [verification]
alu_top.v ‘
{ 1
inc src m [test_components J [testbench J [tests]
truss.svh truss_verification_top. setup test_component.sv,.svh alu_test.sv,.svh

sv,.svh

top
testbench.v,.sv,.svh
hdl_paths.svh alu_driver.sv,.svh
alu_monitor.sv,.svh
alu_generator.sv,.svh
alu_checker.sv,.svh

138

Directory Structure

The source code for the chip is in the /rt1l directory. How does the
truss run script know this? The file /verification/testbench/top/
hdl paths.vc is used to specify the paths to the RTL and the RTL
include directories and all source files. This is so that the RTL files can
be rooted in a place different from the verification directory.

The /results directory is where you run the tests from. It also can be
wherever you want. The authors generally put this directory in some non-
backed-up networked storage area that is independent of the source-code
control system. In the handbook example, the /results directory is
placed in /examples/alu, at the same level as the /verification
directory.

The /verification directory contains all the source code for the
verification system. The /bin directory is there for the project’s local
scripts. The authors usually put a setup script there and alias setup to it.

The other four subdirectories—

/tests, /testbench, /vip, and /test components

—are where the actual source files are. The /tests directory is where
your test name.sv and test name.svh exist. These files are used
when you give the --test <test name> option to the truss script.

The /testbench/top directory contains the SystemVerilog and HDL
sources for the top-level testbench. If you have more than one chip in
your simulation, it may be useful to have /testbench/<chip name>
directories.! The chapter on Chip-Level Testing shows an example of this.

The /vip directory is where chip protocol classes go. There should be
a subdirectory for each protocol and major feature you need to test. The
ideais that the code in these directories is fairly portable, and may contain
purchased VIP as well as project and company-created VIP. In our
example, there is only the /alu directory.

The /test components directory contains the scenarios that you want
to run. For this example, we’ll run only one scenario, called

test component.

I Use the --config option to the truss script to select a directory.

An Object-Oriented Framework 139

Chapter 8: Truss Example

Theory of Operation

140

We’ll be testing a really basic ALU chip. It takes in two 32-bit operands
and performs a simple logic or arithmetic function. We’ll use a legacy
c-model for comparison with what the chip produces. The output consists
of a result and an “operation complete” status interrupt. The test-
bench.v will instantiate this ALU module and provide system clocks
for the chip and verification system.

The main objects are shown below.

ALU Example: Objects and Connections

testbench.v

aIu::‘cirlver ’—b alu alu::monitor
connection

\ alu::driver_agent \

‘ alu::monitor_agent ‘
lu:: t t
[alu generator_agen \ ‘ agent

-
alu::generator | alu::checker [— C-model |
—‘ ’7 transaction

‘ alu::test_component ‘

alu_test

Because there is only one protocol in the chip, we’ll just refer to the
components by their functionality. In other words, we’ll say “driver,”
although in a chip with many drivers we would need to say which protocol
we are talking about. (Note that we do prefix the code in an ALU string. b

I The authors had intended to use a package, but the SV language is fairly weak
with respect to packages. For one thing, one cannot extend a package, which
meant all the header files would have to be included from one package/
endpackage declaration.

Theory of Operation

In the testbench class, we have all the classes of the ALU component
layer. There is a connection-layer driver and monitor, with their accom-
panying agents. There is a generator and a checker. The checker is
interesting, because we have a legacy c-model of the chip, which will be
used by the checker.

There is also a test _component class, which runs a random number of
operations through the chip. And, of, course, there is an alu_test class,
which builds a test component, giving it the generator, checker, and
driver from the testbench.

The following illustrates the wires used by the verification system:

ALU Example: HDL Connections

alu::testbench

1
1

clock
reset_n
reset_done 1

alu::driver

|| op_code , HDL testbench

operand_b 3,

alu::monitor
op_result 3,

operand_a 3;

alu

op_valid 1

h 4

op_done

The driver and the monitor take care of the protocol into and out of the
chip. The testbench takes care of bringing the chip out of reset.

The remaining sections highlight some specific “points of interest” in
the code. The code itself, being the first example, is not that big. If you
want to follow the code through its execution, start with the Truss

verification top.sv, then move on to testbench.sv and test.sv.

An Object-Oriented Framework 141

Chapter 8: Truss Example

Running the Simple ALU Example

You might want to see the log messages on the screen, so let’s talk about
how to run the example. In the /examples/alu tutorial/bin direc-
tory, there is a setup script. If you look at the setup file, it sets up a few
environment variables that are needed by the run tool.

First, source the setup file, then execute the following:

$TRUSS HOME/bin/truss -—test tutorial test

The truss command has many more options; type truss —help for a
synopsis.

You should see the source files being compiled, and then the test should
run. When the test runs, a series of printouts will announce the flow
through the test.

Points of Interest

142

The next few sections address specific places in the code. These sections
follow the general way you go about hooking up a chip to a Truss-based
verification system.

For example, the first thing to be concerned with is bringing the entire
chip out of reset. After that, you’ll probably want to pick a chip protocol
and write the driver and monitor classes for it. Then, you might decide
upon some specific operations you want to perform and write the test
component to exercise the protocol or feature.

In general, the test builds the test components and ends when the last
operation completes—that is, when the test component’s
wait for completion () returns.

Power-on Reset

Power-on Reset

Most chips have a power-on reset sequence. This sequence can be basic,
or rather complicated. In this example we address a basic sequence.

The chip has a reset line, which is pulled low to initiate a reset. After
the line is asserted, the chip performs its reset sequence. This chip only
needs a fixed-duration pulse.

The testbench class is responsible for bringing the chip out of reset.
The testbench methods time zero setup () and out of reset() are
called by the top program to reset and configure the chip. In our ALU
example, we’ll use a reference clock to count a number of cycles to keep
the reset n low.

Below are the snippets of code that perform the chip reset. The methods
are located in testbench.sv.

This method is called first by verification top():

task testbench::time zero setup();
top reset .resetr = 0;
endtask

Note that the top reset was built by the build interfaces () func-
tion and then cached in the testbench’s constructor.

Then, this method is called:

parameter int reset count = 10;
task testbench::out of reset (reset r);
top reset .resetr = 1;
for (int 1(0); i < reset count; ++i) begin
@ (posedge (top reset .clock));
end
top reset .resetr = 1;
endtask

That’s all there is to it. Now the chip is ready for operation.

An Object-Oriented Framework 143

Chapter 8: Truss Example

Driver and Monitor Protocol

144

Now that the chip is out of reset, we can start to drive it. This chip has
a simple protocol for sending operations to perform. Assuming op done
is asserted, the driver puts op_code, operand_a, and operand b on the
wire. Then it asserts do_op and waits for op_done to be asserted. The
code to do this is in alu_driver.sv and is shown below:

task alu driver::send operation (operation op);

alu input .op code <= op.op code;

alu input .operand a <= op.operand a;

alu input .operand b <= op.operand b;

alu input .op valid <= 1;

//Now wait until accepted

@ (posedge (alu input .operation done));

alu _input .op valid <= 1;

@ (negedge (alu input .operation done));
endtask

The alu_input_above is a virtual interface to an ALU interface, which
was passed in to the constructor. Note that in a “real” driver, you might
want to put # (drive delay) before the first assignment. !

The monitor code is fairly simple as well. The monitor uses a local utility
class called run_loop. It consists of two methods, loop condition ()
and loop body (), which are run in a thread. The idea is that a number
of monitors are just infinite loops of “wait for trigger” and then “gather
data.” This class represents that concept.

The loop condition () method of the monitor waits for op done to
go high. The loop body () method then copies the result into a local
variable. It then calls the pure virtual method receive completed() to
connect to the monitor agent.

I- Recall that the authors do not believe it’s a good idea to use clocking blocks.
You and your team may, however, want to use them.

The alu_test_component

Here is the code, in cpu_monitor.sv:

task alu monitor::loop condition ();
@ (posedge (alu output .operation done));
endtask
task alu monitor::loop body (output bit go_on);
receive completed (result .to int());
@ (negedge (alu output .operation done));
go on = 1; //continue loop
endtask

Other than the reset logic (and the watchdog timer), the monitor and
driver are the only code to interact with the chip wires.

Next we’ll look at how we come up with the operations to be sent to the
driver.

The alu_test_component

We now run a random sequence of operations through the ALU, testing
the basic operations with random operands. The start components_ ()
method is used to run this exercise.

The code is shown below.

task alu test component::start components ();
driver .start();
checker .start();

endtask

Like most test components, this one just starts the lower-level compo-
nents.

The start components_ () method is used to do select the number of
operations to perform.
task alu test component::start components ();
bit [7:0]1 min words =
dictionary find integer ({name , " min ops"}, 10);

bit [7:0] max words =

I Be careful about using byte, as it is signed.

An Object-Oriented Framework 145

Chapter 8: Truss Example

dictionary find integer ({name , " max ops"}, 15);
number of operations =
get number of operations (min words, max words);
endtask
function bit [7:0] get number of operations
(bit [7:0] min v, bit [7:0] max v);
bit [7:0] returned;
'RAND RANGE (returned, min v, max V)
return returned;

endfunction

Checking the Chip

Because we do verification for a living, the automated checking of the
chip’s results is important. In our case, we have a legacy c-model of the
ALU and will use it to check that the answer is what we expected. The
checker waits for the monitor agent to deliver a completed operation.
Then it uses the inputs sent by the generator to have the c-model come
up with the expected result.

The c-model prototype is shown below.

#if defined(_ cplusplus)
extern "C" {
#endif
unsigned int alu model (unsigned int a,unsigned int b,
unsigned char op);
#if defined(_ cplusplus)
}
fendif

Note that the i fdefs allow the code to be compiled by both C and C++
code.

This key algorithm is in checker.sv and is shown below.

task alu checker::start ();
forever begin
operation gen;
teal::uint32 actual;

generated .get(gen);

146

Completing the Test

actual .get(actual);
if (alu model (gen.operand a, gen.operand b,
gen.op _code) == actual) begin
log .info ($psprintf (" EXPECTED %s == sent %d"
gen.sreport (), actual));
end

else begin

log .error ($psprintf (" EXPECTED %s != sent %d"
gen.sreport (), actual));
end
int count ; generated .count(count);
if (!count) begin

completed flag .signalf();
return;
end
end
endtask

The checker works fine as long as the operation done is in synch with
the result. However, the checker can be wrong if the monitor misses a
result or somehow inserts an extra one. We could have registered the chip
inputs at the same time as we got the results. However, by doing this we
make the assumption that there are no queuing or pipe stages in the ALU.
This assumption works fine for our example, but it is probably not valid
for most ALUs.

Completing the Test

When does the test stop? When verification top () calls the test’s
wait for completion (), which in turn calls the test component’s

wait for completion().

In turn, the test component’s wait for completion() calls the
checker’s wait for completion (). The authors agree that this sounds
silly, but in the later examples we actually do a bit more than just forward
the call.

In the end of the forwarding chain, it’s the checker that actually decides
when the test is done. This makes sense, because the checker is best able
to “judge” what the chip did and when all the inputs have been checked.

An Object-Oriented Framework 147

Chapter 8: Truss Example

But how does the checker know? There are many possible ways, but in
this example the checker assumes that when the generated data channel
runs dry, the test is over. This is a valid assumption—as long as you make
sure that the generator can always be one step ahead of the checker. (If
your chip has any latency, this is not a hard assumption to sustain.!)

The checker code is shown below—

task checker::wait for completion();
completed flag .pause();
//note that the checking thread completed normally
completed = 1;

endtask

—and at the bottom of the main check loop:

int count ; generated .count (count);
if (!count)
begin
completed flag .signal();
return;
end

Remember that after the wait for completion () returns, the top calls
the report () method in the test. The test calls the test_component’s
report () method, which in turn calls the checker’s report () method.

The report () method prints the state of the completed boolean. In
this way, when you have multiple test components and the watchdog
timer shuts the simulation down, you can tell which checkers have not
completed.

I Note that an intergenerate delay should not affect when the expected data are
sent to the checker. The point is that even when delays are inserted, this model
should be valid.

148

Summary

Summary

This chapter is a tutorial on the Truss framework. We exercised a simple
ALU, but implemented all the parts of a Truss-based verification system.
The main objects and their connections were shown. The directory
structure was introduced so we can find our way around the code. Then,
the chip and the HDL connections were shown.

After laying out the verification system and showing how to run the
example, we looked at how the chip was to be brought out of reset. We
did a quick side tour to talk about how to run the example. Running the
example produces many log messages, but this is probably a good thing
when one is learning.

We showed how to bring the chip out of reset and how the driver and
monitor connect with the chip. One point to note is that while this protocol
required only a few wires, many real protocols are no more complicated.
Of course, your code will be more detailed.

We looked at an important part of the verification system, the checker.
In this example, the checker used a c-model to check that the chip was
working correctly.

The last thing we looked at was how the test stopped. We looked at the
normal path, ignoring the watchdog timer. We showed how the checker
was in charge, pausing the end of the test until all the data had been
checked. The interesting point to note is that the checker may have had
errors, but it will continue until all generated data have been checked.
The Truss utility class error threshold can be used to terminate the
simulation in the case of excessive errors. The Truss
verification_top () also does this.

Whew! We made it through the first example. Time for a coffee break
and some foosball!

An Object-Oriented Framework 149

150 o o o o o o o Hardware Verification with SystemVerilog

Part Ill:

Using OOP for
Verification
(Best Practices)

This part of the handbook explores what it means to write OOP-based
code. It’s not easy to “get it” when it comes to OOP. There are many

techniques, and experience plays an important part.

We’ll walk through the activities of programming, showing examples
and experiences that form the design and coding biases often found in
OOP-based verification systems.

We’ll end each section with a short sentence about the lesson learned
from each example or experience. This is in no way meant to be a rule.
Rather, it’s another trick, to be added to your bag of tricks you can use—

or not—as appropriate.
This part addresses the following themes:

m The shift in thinking that usually occurs when you start working
with OOP

m How to use OOP to manage complexity when architecting a
verification system

Hardware Verification with SystemVerilog: An Object-Oriented Framework 151

m Techniques useful in making classes and connecting them

m Code techniques useful in writing OOP-based code

152

Thinking OOP

C HAPTER 9

NOBODY expects the Spanish Inquisition!
Amongst our weaponry are such diverse
elements as fear, surprise, ruthless
efficiency, an almost fanatical devotion to
the Pope, and nice red uniforms—Oh damn!

Monty Python, episode 15, 1970

Getting your brain around OOP is a challenge. You may have followed
the syntax of classes, inheritance, and so on. But when should you write
new classes or use inheritance? What about owning an instance versus
deriving from a class? A little befuddlement is okay—OOP requires a
shift in thinking, and mental fog is a natural result.

This chapter will get you “thinking OOP.” A reason OOP is all muddy
is that there are no rules. “Thinking OOP” is more about using a set of
coding biases and lessons learned than in making trade-offs. Sure, we
could have pretended there were rules, providing numbered steps such
as, “first you must blah, blah, blah,” or “you must always apply by blah,
blah, blah,” but no one would remember. Instead, this handbook tries to
teach you how to ride the “OOP bicycle.” Learning to “think OOP” is
not trivial, but once you’ve learned, you never forget.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 153

Chapter 9: Thinking OOP

Overview

154

We now introduce thinking and using OOP in stages. From the first stage
(the “big picture”) to the last (coding), we introduce an “arsenal of
weaponry” that has proved useful for programmers. This arsenal requires
a few chapters. In this chapter we concentrate on framing the OOP
process. We talk about the difficulties in managing complexity and
creating adaptable code. We then discuss the difference between the
interface and the implementation of a piece of code. Subsequent chapters
cover architecture and coding.

Remember, verification is neither simple nor easy. Any serious attempt
to verify hardware will result in a complex system. Consequently, it is
important to realize that the complexity of a verification system is not
the result of poor implementation, but is largely intrinsic to the problem
of verifying a complex design.

Object-oriented programming is used to help manage complex problems,
not eliminate them. The goal is to make the complex appear simple
without introducing unexpected behavior. The trick is to keep the focus
on making things seem as simple and clear as possible, while minimizing
the use of “magic” code or confusing connections. This will nonetheless
create a bit of a conundrum, as what is simple and clean to one is often
perceived as unnecessarily complex and “sneaky” by another.

There is no “silver bullet” to slay the werewolf of complexity. Verification
complexity needs to be managed differently across different types of
projects. For example, System-on-a-Chip (SoC) designs are complex
because they often involve several independent input/output (I/O) sub-
systems. For that matter, advanced processors, especially those dedicated
to graphics and audio applications, require multistage pipelines and
interrelated computation. The best solution to this complexity is com-
munication, through understandable design and code (abstractions, min-
imal assumptions, and so on), combined with a drive toward common-
sense simplicity.

Furthermore, making the design and code adaptable adds to the difficulty
of verification—yet it is exactly this additional difficulty that OOP was
created to manage. In a fast-paced and increasingly complex product
cycle, writing adaptable code is as important as managing complexity.

Sources of Complexity

The concept of creating and adapting code seems simple enough,
although in practice it is very difficult, for a number of reasons. This
chapter looks at some of the reasons why building adaptable code is
difficult. Don’t get discouraged; often adaptable code is a natural by-
product of a well-reasoned design.

One way to think about managing complexity and creating adaptable
code is to look at what is holding us back. In the real world of verification
development, there are rarely perfect solutions. Nevertheless, we can
build systems that make appropriate trade-offs. To this end, some sections
of this chapter include a table of trade-offs to help you make the most
appropriate choice for your code.

Sources of Complexity

When you sit down to write code, there are several constraints that slow
down the coding process. These constraints can be viewed as adding
complexity, because they make an inherently difficult problem even
harder. Some of these complexities arise from external sources such as
teamwork (thatis, local personalities or working with remote sites). We’ll
touch on teamwork lightly, following our discussion of complexity.

Other complexities are created when a solution is implemented. This is
because any solution, almost by definition, involves trade-offs. The
authors call this implementation complexity, and discuss it in the next
section.

Essential complexity vs.
implementation complexity

In any verification task there are algorithms and procedures that are
required by the specification. In USB, for example, there is a process
called enumeration that has a prescribed algorithm for both the host and
the device. This is called essential complexity, because it is required.
When that protocol is implemented in classes and code, some additional
complexity is created. For example, the host and device interrupt code
must try different scenarios. The authors call these classes and code

An Object-Oriented Framework 155

Chapter 9: Thinking OOP

implementation complexity. The classes and code are needed, but are
more an artifact of the solution than a real part of the problem. Why is
this distinction important? Because you cannot get rid of the essential
complexity, the goal is to make the essential complexity as simple as
possible, and keep the implementation complexity as minimal as possible.

Implementation complexity is to some degree always created when you
are designing or coding essential complexity. For example, although the
PCI Express protocol specifies endpoints and a root complex (the host
node, or top of the tree), no data structures are specified to manage these
concepts. When these are coded in the verification of a root or endpoint,
they are implementation complexity.

Remember, engineering is all about building the appropriate solution to
a problem, creating problems as a result of that solution, solving those
problems, and so on. The successful engineer transforms the big problems
into a series of solutions and little problems that are acceptable for the
task at hand.

It is important, as much as possible, to use the terms and connections
identified in a protocol, chip, or system specification. This will minimize
the implementation complexity and provide a basis for a mental model
of operation. Try to minimize the implementation complexity, but under-
stand that it will always be present.

Be aware of the essential complexity of the problem, and be
even more aware of the complexity created by the solution.

Flexibility vs. complexity

156

To make a verification system that is flexible also appear simple is
exceedingly difficult. Flexibility and complexity are often trade-offs, and
usually flexibility wins. It often helps to keep in mind that the developers
who will read your code are intelligent, but time-limited. An overly
complex solution will do more to slow them down than a simple, but
tedious, interface.

As an example, consider a memory subsystem of a verification testbench.
Assume that this memory subsystem is on the main bus of a chip. There
are many possible questions to ask when designing the interface. For
example, should there be separate back- and front-door accesses? Is

Sources of Complexity

randomization needed? Should all writes be checked to confirm that the
chip has accepted the data? What happens when the chip reads memory
that was not initialized? Is this an error, or should it be ignored (and
random or undefined data returned)?

The following is an example of a possible class interface. How obvious
is it that the design questions above were answered in a flexible, but not
complex, way?

'include "teal.svh"
import teal::*;
class memory bus;
extern function new ();
//The zero-time memory access methods:
extern function uint32 back door read (uint64 address);

extern task back door write (uint64 address,
uint32 wvalue);

extern function uint32 front door read
(uint64 address);

extern task front door write (uint64 address,
uint32 wvalue) ;

//Will randomly select front or back door every time
function uint32 read (uint64 address);
bit front door; 'RAND RANGE (front door, 0,1);
return (front door ?
front door read (address)
back door read (address));
endfunction
task write (uint64 address, uint32 value);
bit front door; ‘RAND RANGE (front door, 0,1);
if (front door) front door write (address, value);
else back door write (address, value);
endtask
'PURE virtual uint32 handle DUT unitialized read
(uint64 address);

endclass

There is no immediate solution to the flexibility-vs.-complexity trade-
off. The “current best” answer will evolve as your team changes its
members and gains experience. The class above certainly seems com-
plete, if possibly a bit too complex. One thing to note is that there is both
front- and back-door access as well as a random method. This seems
overly complex, as the random method could be implemented in an

An Object-Oriented Framework 157

Chapter 9: Thinking OOP

158

inherited class if that is what coders want. In this case, that interface
should probably be removed from this base class.

Now suppose that team members designed their code to work indepen-
dently of whether the memory read/write method was front or back door.
In this case the random method should be the only approach, and the
front- and back-door accesses could either be moved into the private
access or left to subclasses to implement. Note that by removing the
explicit calls to front- and back-door access, we are making the code
both less clear and more flexible. This is either good or bad, depending
on whether the team wants to write code that is independent of the front-
and back-door access method.

Now take alook at the pure virtual method to handle aread to uninitialized
memory, handle DUT unitialized read().By making this method
pure, an inherited class must be created. However, even this is confusing.
Is this the method for a verification-initiated read or a chip read? Con-
sequently, there should be two methods to cover both cases. Also, while
a flexible solution requires two methods and an inherited class, it may
be appropriate to make a simplifying assumption.

Suppose that the team considered a read to uninitialized memory by the
verification system to be an error. This could simply be written into the
implementation of the read method. However, the chip side is not so
clear, so maybe just returning X’s might be the team’s preference, and
this pure virtual method could possibly be removed.

Here is an abbreviated memory class resulting from the previous discus-
sion:

'include "teal.svh"
import teal::*;
class memory bus extends verification component;
extern function new ();
//The zero-time memory access methods:
extern function uint32 back door read (uint64 address);

extern task back door write (uint64 address, uint32
value) ;

extern function uint32 read (uint64 address);
extern task write (uint64 address, uint32 wvalue);

endclass

Sources of Complexity

A class interface can be flexible or simple, depending on the
specific needs of the verification effort.

Apparent simplicity vs.
hiding inherent complexity

One of the goals of good coding is that there should be no surprises when
one tries to understand the code. As a counter-example, an interface may
appear simple, but in practice it may have a usage model that affects the
simplicity of the interface. This often shows up when you try to inherit
from aclass or call the methods in a different, but rational, order compared
to what the original coder intended.

Example: How hiding complexity
can create confusion

Here is an example of where “hiding the complexity” actually made the
system harder to understand. In verification there are classes that manage
the top level of a subsystem, other classes that manage the transmission
of data (often called stimulus generators), and still other classes that
monitor the output of the chip. One verification team decided to put these
concepts into separate base classes that all used a common root class.
The common root class had the usual init (), start(), stop(), and
post_run () methods. All of the subsystem classes inherited from these
base classes. The constructor of the base class maintained a master list
of all the instances, with an enum, called type id, to indicate the type.
Then, when the verification system started up, the “program” base class
would walk this master list and call the init () methods of all the “top”
(that is, type id==top objects first, followed by the init () method
of all the “monitor” objects, in turn followed by the init () method of
all the “generator” objects, and so on. The actual system had ten different
flavors of type id, and thus ten different passes for each method.

Not surprisingly, this “under-the-covers” magic caused significant dif-
ficulties for the team. It was hard for subsystems to control which
monitors got started in what order, except by carefully controlling which
objects were constructed when. Engineers new to the project would get
confused and fail to understand the hidden priorities. The team tried to
solve the problem by adding a special StartupClass, which would be

An Object-Oriented Framework 159

Chapter 9: Thinking OOP

160

the first to run its init () method. However, this made the effort of
moving a test from the unit level to the full chip level difficult, because
the single StartupClass could not be reused. As a result, the “simple”
system ended up adding substantially to the complexity of the verification
effort.!

Example: How apparent simplicity
leads to later problems

Hereis another horror story. Almost every chip has an interrupt capability.
In one case our test team decided to have a single interrupt scoreboard
for a chip. The scoreboard would not check the reason for the interrupt;
instead, it would simply have a queue of interrupt handlers and make
sure there were not any unexpected interrupts or leftover handlers. In
practice, this simple scoreboard turned out to be inappropriate for several
of the major sources of the interrupts.

There were two main classes in this case. The first was the interrupt
handler, which was used to encapsulate the handler logic if it matched
the interrupt. This class is shown below.

class interrupt handler extends verification component;

extern virtual function bit match id
(uint32 vector id);

extern virtual task do handler ();

endclass

The next class was the interrupt scoreboard. This class had a list of
handlers as well as a start () method to watch for interrupts. It also had
a post_run() method to make sure there were no unused interrupts.
This class is shown below.

class interrupt scoreboard;
extern task post handler (interrupt handler ih);
extern virtual task start ();
extern virtual task post run();

endclass

I One could reasonably argue that this is just an example of a poor or
inappropriate design, yet the authors have seen it used in two different
companies.

Sources of Complexity

When an interrupt was asserted, the scoreboard called match_id () for
every interrupt handler on its scoreboard. The first interrupt for
whichmatch id () returned true would be removed from the scoreboard,
and its do_handler () would be called. It was up to the test writers to
be as specific as they wanted to be in the match id() method. Some
test writers always returned true if the interrupt was for them, whereas
other test writers tried to be more specific as to the exact reason for the
interrupt.

This class worked fine until the team started testing chip interfaces for
which one could not reasonably predict the number of interrupts. Two
interfaces in the chip had this property—the USB and the Ethernet
subsystems.

In the USB subsystem, a start-of-frame interrupt was generated once
every millisecond. Because the USB controller initialized its start-of-
frame counter to a random value, and the test end conditions were fuzzy
(they were simply based on other data streams draining their checkers),
the number of start-of-frame interrupts could not easily be predicted (nor
was this number very interesting to know). In this case, the original
decision regarding where to put the scoreboard caused an almost impos-
sible checking algorithm for the USB subsystem.

The other example from this same chip was related to the Ethernet unit.
The generator randomly assigned masks and packet types, so predicting
where (or whether) a packet would arrive was difficult enough—Ilet alone
predicting the interrupts that would be generated.

The final straw was that, as an optimization, the chip combined interrupt
events, so that if two interrupt-generating events on the same subsystem
occurred before these events were serviced, only one interrupt would be
generated. Accounting for all these possibilities was not only very hard,
but it was also was of little use for verification. As a result, the interrupt
scoreboard was removed and individual subsystems were called to handle
all interrupts, based on a fixed vector identifier-to-subsystem mapping.

An Object-Oriented Framework 161

Chapter 9: Thinking OOP

Although a resulting class interface might be too simple for
what must be accomplished—and overly simplistic models can
lead to complications in implementation—don’t stop striving
for the simplest usage model possible.

Team dynamics

It may not be obvious, but the makeup and operation of the team affect
not only how code is created, but also how well the adaptable code is
received. This, in turn, affects the success of the project. Why is this
relevant to “thinking OOP?” The addition of OOP created a much more
tightly coupled architecture—one where understanding the intent of your
fellow team members is essential to coding well. OOP is likely to bring
into focus any team issues already present.

A healthy team is better able to create well-built code and adapt existing
code. What does this have to do with a handbook on verification?
Verification systems have become as complex as production software.
As aresult, team dynamics becomes a major factor in the success of the
verification effort. The sooner we, as an industry, realize this, the sooner
we can address team dynamics. Team dynamics is the current focus of
the software domain. (There are books on this in the For Further Reading
section at the end of this chapter.) As this is a new concept for verification
teams, we’ll just touch on the subject here.

Team roles

There are many team roles and responsibilities. A clear mapping of roles
to personnel is necessary for a well-functioning team. An important role
is that of the code leader. The person in this role is considered the
“godfather” of the team and usually is consulted on major and minor
architectural decisions. This person knows the language thoroughly and
is interested in the latest “best practices.” Another important role is that
of the rechnical leader, who knows not only the architecture, but also
the scripts, policies, and assignments of the team. This person is different
from the code leader in that the responsibility of the technical leader is
broader, with a more project-level view. The role of foolsmith is also
critical. This person provides all the scripts and “spells” that make the
day-to-day learning and writing of the code easier.

162

Creating Adaptable Code

Identify and celebrate team roles—they are all equally
important to the success of the team.

Using a “code buddy”

Often an independent reviewer can find places where the code can be
made clearer and more adaptable, because the reviewer can concentrate
on the finished product, not on the failed attempts. Selecting the right
code reviewer is critical to the success of this endeavor.

It is almost always a mistake to have a team code review. This creates a
poisonous many-against-one atmosphere. Instead, let each coder pick
their personal “code buddy.” This individual will be a trusted coworker
with whom an informal walk-through of the code can be accomplished.
The focus should be on the fact that the code review happened at all, not
on the specifics of the review.

Code reviews, though necessary, must be done with care.
Otherwise, team cohesion and the project will suffer.

Creating Adaptable Code

How is a section on creating adaptable code relevant to “thinking OOP?”
Well, one of the reasons OOP has proved useful is that it really helps
create code that is adaptable. In some sense, “thinking OOP” is about
creating adaptable and reasonable code.

The term code adaptability is an informal measure of how easy it is to
move code from one use to another. Code adaptability is an acknowledg-
ment that there is more work to do, even if you purchase verification IP.

Achieving adaptability

Achieving adaptability is a fancy way of saying that you and your
programming team creates code that has proved useful for generations
of chips. Of course, there is always new code to write for each chip;
otherwise, there is little reason to create another chip. The idea is to build

An Object-Oriented Framework 163

Chapter 9: Thinking OOP

adaptable code that is acceptable in its complexity, can be reasoned about,
has minimal assumptions about its environment, and has minimal con-
nections to other code modules, as appropriate for your organization.

As an example of code adaptation, one company may prefer to make a
copy of some common code before starting a project. In this way they
can remove unnecessary code and complexity and, at the corporate level,
handle the management activities of common bug fixes. Another com-
pany may prefer to keep a single code base for all projects. This will
almost definitely increase the code’s complexity and size, yet common
bug fixes are automatic. Each approach is justified; as is a common theme
in this handbook, there are no absolute correct answers.

Let’s come up with some of the ways code can be adapted. You can do
the following:

m Reuse existing code without any modifications, or

m Copy existing code, or

] Use existing code as base classes, or

] Use only the test cases of existing code, or

m Use only the BFMs of existing code

Here, the meaning of “existing code” includes both in-house and pur-
chased Verification Intellectual Property (VIP).

The premise of creating adaptable code is that, for the next
project or revision, it will be faster to adapt existing code
than to develop it anew. This is a major reason for using OOP
techniques.

Why is adaptability tricky?

164

So most people want their code to live forever. In practice, however,
creating adaptable code is difficult.

One tricky thing with adapting code is that the definition of “adaptable”
is relative. Does this mean the code can be compiled on different versions
of a compiler? Does this mean the code can be reused in a different
project? What about VIP, which can be adapted to different compilers in
different projects in different companies? As with the definition of
verification, each organization will have different metrics for what makes

Architectural Considerations to Maximize Adaptability

code “adaptable.” The requirements will often change, depending on the
team, the individual coder, and the purpose of the code.

While the need to create adaptable code is always present, the actual use
of adapted code evolves as both a team and our industry gains experience
in reuse techniques. The growing interest in using OOP is a good example
of this evolution.

Another difficulty with adapting code is that production code is ugly. A
verification system that has made it to tapeout is often riddled with
workarounds and undocumented assumptions. It also contains features
specific to a particular chip. Moving the code to another project is not
trivial.

There are more barriers to adapting code, such as a heterogeneous team
experience, a lack of domain experience, and competing requirements
for code flexibility.

Creating adaptable code may appear difficult at first glance.
However, with the techniques presented in this handbook,
you can produce code that is adaptable to a large range of
projects, with a minimal increase in the code’s complexity.

Architectural Considerations
to Maximize Adaptability

This section looks at the reasoning behind, and techniques for, recogniz-

ing and building adaptable code. (The next chapter looks more in depth

at these considerations). To create an adaptable architecture, begin by

asking the following fundamental questions:

] Where and what are the global components (such as a memory
map)?

] Where do the lines of responsibility lie?

m What capabilities are needed in the current—and the next—
design?

A factor affecting the ease of code adaptation is how close the next chip
is to the current one. Obviously, the closer the two chips are, the better

An Object-Oriented Framework 165

Chapter 9: Thinking OOP

the opportunity for adaptation. This touches on the subject of minimizing
assumptions in a functional area. The fewer the chip-specific assump-
tions, the more likely the code can be adapted. However, the resulting
code may be more complicated and take more time to develop and learn.

Building adaptable code also involves a correct by construction technique
(discussed in detail in the next chapter.) This means that, once you change
the code for the next design, it is better to have the code fail to compile,
rather than having it fall off an “if” test or just return. If the code does
not compile, there is obvious work to be done. The worst case is code
that compiles and runs, but is wrong. Code assertions, such as the
assert () function, can also help to catch the runtime errors. In other
words, use assertions for assumptions that cannot be expressed by con-
struction.

Changes are easy—or just plain impossible

166

An interesting phenomenon occurred when large-scale systems started
to be built by means of OOP techniques. The developers found that
changes were either quite easy or nearly impossible. They were easy if
the architecture anticipated the change, which usually meant the change
occurred along class lines. On the other hand, changes were really, really
difficult if several items of data to be changed were spread out into
multiple classes. Of course, this is code, and code can always be made
to “work,” but the very technique of hiding data and making data (objects)
drive the algorithms means that some algorithms may be spread out across
many objects.

This is relevant because it means that if a feature is not present in the
original code, it may be difficult to add that feature later. On the other
hand, it might be simple. This leads to a design bias that favors smaller
classes, with attention to the assumptions made in those classes. A few
examples illustrate this point.

Consider an object that needs to access external RAM as part of its
function. If the current design used ZBT! RAM, a certain protocol is
used. If, in a later design, the RAM were changed to QDR2 RAM, a new

1. Zero-bus turnaround.

2. Quad data rate.

Architectural Considerations to Maximize Adaptability

protocol would be used, but the essential function would remain the same.
If the original designer had “hidden” the actual memory interface in
another object, then it would be relatively simple to build a QDR object
and pass that into the other object’s constructor.

As another example, consider a testbench object that supports the chip
inits initial boot sequence. Suppose that a chip implementation supported
booting from a UART or USB. In this case you could code the different
protocols in the testbench directly, or implement them as specific inher-
ited classes of a generic boot source class. Suppose, also, that later
implementations of the chip might support additional boot devices, such
as a disk or I’C interface.! The test could then let a testbench choose the
boot source. By abstracting the concept of the boot source from the tests,
it becomes easier to adapt the tests to new environments and to introduce
randomness in testing.

Asanarchitectural bias, making smaller classes with minimal
assumptions can lead to code that is more adaptable.

Where is adaptation likely to happen?

A fruitful place for adaptation is at the physical interface, or connection
layer, of the chip. This is because an external standard (such as PCI or
USB) often defines the behavior there. Note that programming the pro-
tocols is not as clear cut. This is where the trade-offs between flexibility
and complexity, and the use of minimal assumptions, come into play.
(Trade-offs are discussed at length in the chapter on OOP connections;
we’ll just start thinking about this issue here.)

As an example, monitors on a bus might use events to coordinate with
higher-level checkers. Because the monitor does not know whether a
checker is waiting on an event, the connection is relatively weak and thus
the code might be made more adaptable in this case. As a result, this
same monitor class could be used in several different environments, each
of which is interested in a different set of events.

L A serial computer bus invented by Philips that is used to attach low-speed
peripherals to a motherboard, embedded system, or cell phone. The name is an
acronym for Inter-Integrated Circuit and is pronounced I-squared-C.

An Object-Oriented Framework 167

Chapter 9: Thinking OOP

Another good area for adaptation is when you exercise a feature of the
chip. Conceptually, the code that has to be executed to verify a subsystem
is independent of where that subsystem is located. In this case, the trick
in maximizing adaptability is to minimize the assumptions the code
makes about the testbench environment. If a common framework can be
used, including what a testbench provides and the application of a few
global objects, it is more likely that tests can be adapted.

Initially, concentrate on the lowest levels of abstraction for
creating adaptable code. Then, concentrate on the part of
the test that exercises a chip protocol or feature.

Separating Interface from Implementation

168

VHDL encourages a separation of the code interface of a module from
its implementation. This separation is a bit more difficult in the Verilog
language, which is usually limited to various stub implementations of
modules. SystemVerilog is like VHDL in that it supports a separation of
“what you can do” (code interface) from “how it is done” (implementa-
tion).

Why is this important? By separating these two concepts, one makes a
a design not only simpler, but also more adaptable. The design is simpler
because the roles of user and implementor are separated. The user of a
class is concerned only with the code interface. The implementor, on the
other hand, is concerned with how to accomplish the code interface.
Neither task is simple, but developers can concentrate independently on
what they need to do.

The code is more adaptable because the implementation may change or
evolve as the project goes on, or as the code is used in other projects.
However, the code that simply uses the class does not have to change.
This is particularly important when class inheritance is used, as explained
in the next section.

The separation of the code interface from its implementation is an
example of the defining of roles and responsibilities of the code. This is

Code Interface, Implementation, and Base Classes

a common theme in this handbook, one that is explored in depth in the
next chapter.

By separating the code interface from the implementation,
we make code that is both less complex and more adaptable
to different situations.

Code Interface, Implementation, and Base Classes

Part of “thinking OOP” involves using classes to express common behav-
ior. In fact, expressing one class as a derivative of another is the main
mechanism of OOP. But how can this help you write better code? It does
so in two ways: one lets you clearly specify a code interface to be
implemented, and the other lets you reuse implementations of existing
classes. (Don’t worry if this issue seems a bit hazy; it is discussed in
detail in the chapter on coding OOP.)

To create a class that is to be used in a code interface, just use pure virtual
methods. For example, to create a top-level code interface, you might
have something like this:

virtual class test;
'"PURE virtual task build ();
'"PURE virtual task run ();

endclass

Then, specific tests implement the build and run methods, as appropriate
for the test at hand. Note the following examples:

class dma test extends test;
virtual task build ();
//code here to build the test...

endtask
virtual task run ();
//run the classes built by the above method
endtask
endclass

An Object-Oriented Framework 169

Chapter 9: Thinking OOP

Summary

170

The dma_test can add other methods as it sees fit; but because it derives
from test, it must implement the build() and run () methods.

The other benefit of using inheritance is to save time during implemen-
tation. The idea is to have a base class implement the bulk of some
common code. Then classes are inherited to implement the specific parts
that cannot be generalized.

For example, suppose we had a protocol that can be expressed in a
common algorithm, but the final wire-driving mechanism were specific
to an implementation of the protocol. Here’s how the base class might
look:

virtual class the protocol;
extern task do send(); //implemented in a source file
'PURE protected virtual drive wire (bit logical value);

endclass

Now, a class can inherit from the protocol and provide the actual
driving of the wire.

Class inheritance is a main part of OOP. Use it to specify a
code interface, as well as to reuse class implementations.

We have started “thinking OOP.” We talked about how verification is
complex, and how this complexity must be managed. We talked about
the goal of creating flexible, adaptable code, and how achieving this goal
may complicate the code.

We got into coding a bit by talking about the separation between a code
interface and its implementation. We also touched on the subject of base
classes and the different ways they can be used.

For Further Reading

For Further Reading

m The sections “A Complex Solution” and “Accidental Complexity
vs. Implementation Complexity” are drawn from the landmark
paper, “No Silver Bullet: Essence and Accidents of Software
Engineering,” by Frederick P. Brooks, Jr.

] The concept of team productivity and its variability is well
documented in Peopleware: Productive Projects and Teams, 2nd
edition, by Tom DeMarco and Timothy Lister.

m One of the “lessons learned” is that the social elements of the
team can affect the code you write. Although this is currently an
important topic of the software domain, we have decided to stay
focused on code techniques. However, there are several good
books on the subject of social elements if you are interested.

The grand-daddy classic is The Mythical Man-Month, by
Frederick Brooks.

Organizational Patterns of Agile Software Development, by
Jim Coplien and Neil Harrison, is a good analysis of several
years of software projects.

Lean Software Development, by Mary and Tom Poppendieck,
looks at how proven “agile” manufacturing techniques can be
applied to software development.

An Object-Oriented Framework 171

172 o o o o o o o Hardware Verification with SystemVerilog

Designing with OOP

C HAPTETR 1

That's right!” shouted Vroomfondel. “We
demand rigidly defined areas of doubt and
uncertainty!”

The Hitchhiker’s Guide to the Galaxy, by Douglas Adams

What is design? How do you go about designing with objects? As
far as a CPU is concerned, you don’t need objects. You might as well put
all the code into one big function—but that code would be really, really
hard to understand. So we break up a single huge solution into a number
of smaller, understandable, and rigidly defined pieces. This is the essence
of design, regardless of the language.

When we design with OOP, this “breaking up” is really just the construc-
tion of a network of classes. However, before we dive into making classes,
we need to understand the OOP design bias. OOP designs tend to focus
on roles and responsibilities. These roles and responsibilities get broken
down further into smaller networks of classes. Ultimately, we wiggle
wires to communicate with the chip.

In this chapter we introduce some basic guidelines for design. We also
talk a bit about some common design mistakes and how to avoid them.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 173

Chapter 10: Designing with OOP

Overview

Design is so intertwined with coding that it’s artificial to separate the
two. Academic textbooks explain that first you architect, then you design,
and then you code. In the real world, however, these steps all get jumbled
together. We tend to do all three at once, having a general idea of what
we want to do, then refining and changing our idea as we start to code.

Designing with OOP is no different. We talk about “paper napkin” or
whiteboard designs. We prototype and refine class interface files and talk
about what each class should do. Just as important, we talk about how
the classes interact and exchange control and data.

Design is messy, but designing with classes can be a little cleaner. This
chapter provides some general guidelines that can help with this inher-
ently untidy process.

Keeping the Abstraction Level Consistent

174

A key evolution in programming came about when we started to talk
about “abstraction levels” in a design. This is somewhat expected,
because humans are abstraction machines. A child can recognize a
“chair,” from the folding chairs at school to the hydraulic ones we use
at work, and most people can operate a car, regardless of the make or
model. Our mind’s ability to abstract away the details of an object or
process is directly applicable to programming. We can solve a complex
design by using abstractions, from the big-picture operations at the top,
down to the wire protocols at the chip interface level.

To put this in fancier terms, at any layer in a design there is an associated
scope of concern and an appropriate level of detail. A scope of concern
is the role of the task. The level of detail is the responsibility of the task.

At the top level of the verification system, the scope of concern is the
entire chip, its configurations, and the traffic that will be applied to the
chip in testing or real life. Here, the level of detail should be very small.
In other words, the test should consist of “big” objects, such as the test
and testbench, and have no minutia. At the other end of the spectrum, at

Keeping the Abstraction Level Consistent

the bus functional model (BFM) level, the scope of concern should be
very small (for example, a handful of pins and wires), but the level of
detail should be high (for example, the precise sequencing of those pins
to implement the protocol). This is shown in the diagram below:

Scope of concern

Boot Ethernet
Start Ethernet
Stop Ethernet
PostRunCheck

if (bit_clk < 8)
tx = data[bit_clk];

Level of detail

Constant abstraction level ——Jp»

Unfortunately, changes in the abstraction level within an algorithm cause
confusion and increase the complexity of the code. For example, shown
below (actual code from a coworker) is a top-level algorithm with two
shifts in abstraction level. See if you can spot the shifts.

task main process loop(uint32 num transfers,
IO BFM io unit);
for (uint32 i=0; i < num transfers; ++i) begin
BFM command command = new ("a command");
assert (command.randomize());
io unit.top.driver.process command (command);
for (uint32 j=0; j < 300; ++3j) begin
@ (posedge (iface .clk));
end
end
endtask

An Object-Oriented Framework e 0o 0 0 0 0 0 175

Chapter 10: Designing with OOP

The first shift occurs in io_unit.top.driver. This is because the
engineer trying to understand the algorithm must now understand two
more classes, top and driver. It probably would have been clearer either
to provide a process_command () method in the io unit, or pass in
only the driver to this function. Multiple periods in an identifier are
usually a cause for concern.

The other shift is in the @ (posedge (iface .clk)) statement—which
is too detailed for the rest of the algorithm. Is it really necessary to worry
about clocking at this level?

Object-oriented programming is all about using abstractions!
Be sure that a class provides some well-defined service at a
fixed level of detail. The implementation of the object is
one leveldowninabstraction, and probably uses lower classes
to get its job done, and so on ad infinitum.

Using “Correct by Construction”

176

As we have mentioned, building a verification system creates a large and
complicated network of classes, instances, and conventions. It’s not
always obvious how to put these building blocks together. However, the
SystemVerilog language provides strong type checking that can help to
communicate the “intent” of the construction. This strong type checking
can give clues as to what classes can go together and how they go together.
You should strive for systems that, if they can be put together (compiled),
are correct. This technique is called correct by construction.

Base classes are often used to show intent. A base class can be used to
specify a required code interface, or to manage a list of homogeneous
objects (whose actual types are inherited from the base). For example, a
base class called checker might be used to indicate that a class has
checking type behavior and has a concept of when it is done, as follows:

extern virtual class checker;
'"PURE virtual task wait for completion ();
endclass

class ethernet checker extends checker;

Using “Correct by Construction”

extern virtual task wait for completion ();
endclass
class pci checker extends checker;

extern virtual task wait for completion ();

endclass

In this case, both the ethernet checker and pci checker can be
assumed to have some action that takes time and has a completed concept.
(Note that in this example, it is probably not appropriate to have a list
of ethernet checker and pci_checker objects. They are unrelated in
function, and are related only by inheritance.)

Here is an example that encourages the building of a list of base class
objects:

typedef class data;

package pci configuration;
typedef enum {in, out} request;

endpackage

virtual class pci endpoint;

'PURE virtual task handle data request (request r,
data d);

'PURE virtual task handle data completion ();
endclass
class configuration endpoint extends pci endpoint
class address endpoint extends pci endpoint

class power management endpoint extends pci endpoint

PCI can be viewed as having several types of endpoints, all of which
respond to in or out requests. In addition, each endpoint has an asso-
ciated action after the data have been sent (or received). Thus, it makes
sense to have a common base class, and probably a list consisting only
of pointers to the base class, pci _endpoint. The actual data in the list
will be of the inherited classes.

Enumerations can also be used to show intent. They can be given names
that match the chip’s control/status register (CSR) field that they repre-
sent and can have values that directly map to the chip, as in the following
example:

typedef enum bit[12:0] {window 4K = 0x100,

window 64K = 0x101, window 1M = 0x102} window size;

An Object-Oriented Framework 177

Chapter 10: Designing with OOP

Be careful, because enumerations, once defined, cannot be extended.
Furthermore, code that uses a case statement on enumerations is a
possible sign of design trouble, and the use of enumerations may need
to be reconsidered. The warning signs are major amounts of code in the
case label, or multiple case statements on the same enumeration. In this
situation, an enumeration is being used as a control flow mechanism, not
as a simple data mapping. It’s possible that the enumeration is better
represented as a set of classes. Using an enum with a case statement is
not necessarily wrong, and it certainly is useful as a name for a bit pattern
that the chip understands, but be aware of potential problems.

This is just a quick tour of the concept of “correct by construction.”
(Many examples of these techniques can be found in the Part IV of this
handbook.)

Be careful with systems that must be validated at run time. While some
parts of a system will need to use run-time checking, this should be the
exception, not the rule. Systems that use run-time checking make it much
harder for others to understand your intent.

Base classes and enumerations are good mechanisms for
making it easier to see and enforce how a system can be put
together.

The Value of Packages

178

When a large amount of code is developed, there will be enumerations
or constants that have the same name. If you had access to the source
code, you could standardize the colliding names. However, changing the
code is more difficult when the code is from another work group, division,
or company. SystemVerilog helps minimize this problem by providing a
feature called a package. A package is like a class, in that the methods
(and data) in the package must be accessed with the name of the package.
By using packages, you minimize the number of global names, because
the previously defined global functions are all in packages, and now only
the package identifiers themselves are global. This decreases the prob-
ability of a collision.

The Value of Packages

Packages are useful for grouping related parameters. A good design bias
is to place the related parameters for each verification component in your
system in their own package. For example, in a file called
lcd parameters.svh, you might have something like this:

package lcd parameters;
typedef enum {TN, S IPS, MVA, PVA} type;
typedef enum {r 60, r 70, r 80, r 100} refresh rate;
typedef teal::uint32 pixel rate;
const! pixel rate max pixel rate = 'h5551212;

endpackage

You can use the enumerations and constants in a package by specifically
naming it (for example, 1cd parameters::<id>) or making it implicit
by means of the import keyword. Below is an example.

'include "lcd display.svh"

import lcd display::*;

//now lcd display enumerations may be used

//without qualification

task lcd function();
lcd display::refresh rate r = r 60; //can be specific
refresh rate rl = r 60; //or not
pixel rate pr = max pixel rate;

endtask

Be extremely cautious of putting an import clause in a header file. It is
almost always a mistake, because every file that includes your header
file will inherit the import clause’s scope. In addition, every file that
includes the header file that in turn includes your header file will now
have the import clause—and so on, with possibly unintended conse-
quences. The authors have first-hand experience in trying to undo this
technique. The task was not pretty.

Another use for a package is to wrap a related set of global objects and
functions. The interface is just a collection of functions, but wrapping
them into a package creates what is called a singleton. While you want
to minimize the number of singletons in a system, they are necessary and
correct for those areas that represent global resources. Singletons are
discussed more in the Coding OOP chapter.

! Within a package in SystemVerilog, a const is similar to a parameter.

An Object-Oriented Framework 179

Chapter 10: Designing with OOP

Packages are very useful for grouping related enumerations
and constants. Be careful with the import clause in header
files.

Data Duplication—A Necessary Evil

180

There is an inherent trade-off between minimizing the complexity of
connections among verification components and duplicating the data
passed among them. The looser the connection, the more likely that there
is a duplication of data. This is talked about in detail in the next chapter,
but we’ll discuss it as a design bias here.

Let’s look at an example of duplicated data. Consider a DMA! chip’s
view of data versus a checker’s view. A processor sends to the DMA
engine the source address, the destination address, and the length of the
transfer. When the DM A completes, selected memory contents are stored
in an object that contains a start address, an end address, a length, and a
completion status for the transaction. The chip synchronization mecha-
nism for the monitor is probably an interrupt. The class and the chip
memory both contain the data, so we have a data duplication situation.
In this design the data duplication is good, because checkers can use the
more abstract fields of a class, instead of reading memory directly. Also,
the code is more portable, because the concepts of source, destination,
and length are abstracted away from the actual memory layout.

In the previous example, the data representation changed from chip
memory to fields in a class. However, there is another place where data
are duplicated. This is a more subtle, yet useful, design technique.

We think nothing of calling a function and passing it an integer. We know
that the integer’s value will be copied. But what if this integer were the
result of some computations in the function making the call? Now the
situation is not so clear. Why? Because this integer is not just a value. It
represents the result of an algorithm that computed some data. The fancy
term for what this integer represents is derived data. This is a normal
situation, and it is used all the time when abstraction layers are crossed.

I Direct memory access.

Designing Well, Optimizing Only When Necessary

In fact, derived data are common in multilayer protocols. Many protocols
have a physical layer, which deals in bits and words. Then they have a
transport layer, which deals in packets. Some protocols even have a third
layer, which deals in higher-layer transfers. As each layer hands off to
the next, data are copied. The concept of derived data also exists when
abstraction layers are used in verification.

For example, consider the physical interface for Ethernet Media Access
Control) MAC. Suppose a verification component called MAC supports
both Media Independent Interface (MII) and Reduced Media Independent
Interface (RMII), and expresses this in an enumeration. These two inter-
faces are quite close, with RMII being a reduced set of the MII interface.
In order to simplify the control connections between the MAC and the
physical layer, the connection could be a single bit set to one for “full,”
to distinguish it from “reduced,” where the bit would be zero. Although
the information in a single bit is weaker and simpler than the passing of
an enumeration, the bit is more appropriate to the lower-level abstraction.

Be aware of the same data being in two places at once. This
generally happens across abstraction levels. Be very aware
when derived data must be refreshed.

Designing Well, Optimizing Only When Necessary

When hardware is designed and implemented, efficiency is critical to its
ability to be built (meeting timing, power, and size constraints). However,
in software the emphasis is often on minimizing mental complexity. This
is natural, as increasingly complex control and data structures can be
built relatively quickly with software.

In verification you must focus on clarity in your overall design and
implementation.1 This does not mean, however, that you can ignore
efficiency.

I The authors assume, of course, that the verification of the chip is the primary
concern.

An Object-Oriented Framework 181

Chapter 10: Designing with OOP

The speed of a functional simulation almost always depends on just a
small percentage of the actual code. You should optimize the code for
simulation speed only after you have finished profiling it thoroughly.
Premature code optimization leads to confusion. While it might run a
simulation a little faster, it will more often than not slow down the project
by being harder to understand and use.

Get the design working and understandable first. Then figure
out what needs to be optimized—and possibly made more
complicated.

Using the Protocol, Only the Protocol

182

The verification test system must both apply stimuli to the chip and then
check to make sure the chip generated the correct response. Consequently,
the verification system is aware of both ends of a data path—an awareness
the software does not have. In a simulation, creating both ends of a data
path is necessary, but it can lead to sloppy code that may mask chip
problems. Be aware of what information the protocol provides, and use
only that information for checking.

For example, the authors helped test a USB device. The original verifi-
cation tests preloaded the chip with the “correct” data. Then, when the
data were needed, as specified by the protocol, they were sent by the chip
to the checker. The checker confirmed the data and all was well. Upon
closer inspection by the software team, a critical parameter was found
to be missing: the length of the response. By design, this parameter was
being dropped by the chip, but because the verification code already
knew the “right” answer and length, the design error was missed. Had
the verification code been cleanly separated into a generator (the
requestor) and a checker (the interpreter) of the request, the error would
have been caught.

Another example concerned a DMA checker. The DMA checker required
the verification components to register all the memory accesses that the
chip would make. At the end of the test, the DMA checker would make
sure there were no unmatched writes. What the checker failed to test,

Verification Close to the Programming Model

however, was the result of overlapped memory writes. There was a bug
in the cache coherency unit that was masked because the tests did not
write to the same address twice.

Minimize the assumptions made across different parts of the
verification system. Strive to use only the “knowledge” that
the productionsoftware has through the feature orinterface.

Verification Close to the Programming Model

Verification is both similar to and different from the production software
that will run on the system. However, the closer the verification archi-
tecture is to the software, the better the chance you have of finding errors
in the programming model, with respect to condition status registers
(CSRs), hardware algorithms, and so on.

So while it is true that the software you use for verification is inherently
a lot more detailed than the production software, you should still strive
to keep your test algorithms as close to the production ones as possible.
This design bias not only helps the software and hardware folks commu-
nicate better, but it can also help shake out register/memory/interrupt
design and programming model.

For example, the authors had a project where the design of the DMA part
of a chip was changed after the verification team had their code reviewed
by the software team. Yes, this change was humbling. Specifically, the
chip used a bit to restart a DMA channel. The original design had made
the transition of zero to one be the enabling action. This meant that the
software would first have to set this bit to zero (it was a one from a
previous enable!), and then set it back to one. Once the software team
was aware of this issue, they asked how hard it would be just to restart
with a write of one, even if the previous value were a one. This was done,
making the DMA enable more intuitive to the software team. Another
change concerned the ability to write the DMA offset and index. The
original design allowed only a reset of the index to zero, which made
resending a DMA buffer clumsy. The software had to recopy all the buffer
descriptors in memory to the zero offset address. The hardware was

An Object-Oriented Framework 183

Chapter 10: Designing with OOP

changed to allow the index to be written whenever the DMA unit was
paused.

A final change was in the address map. Previously, the address space for
the DMA was contiguous, which made sense to the hardware team.
However, because the various I/O subsystems were features that end
users paid for individually, the software was separated according to I/O
subsystems. Because of this division, there were two different address
spaces to manage: one for the I/O subsystem, and another for the DMA.
We changed this design and moved the specific DMA channel’s CSR
address space to the I/O subsystem that it served. While this change
seems (and probably is) simple, it shows that the hardware and software
teams viewed the chip differently. Working more closely together
improves the overall quality and helps reduce total project time. Further-
more, using a software bias allowed the two teams to look at each other’s
code without too much complaining.

Try to design your verification system to use the same
algorithms and subarchitecture as the production software.
That way, you can catch clumsy or conflicting programming
models.

The Three Parts of Checking

184

The major thrust of verification is checking the operation of the chip.
We send data in, or turn on features, and check that the chip produces
the correct response. A fancy term for the transmission of data and the
enabling of features is called stimulus. As a design bias, it’s a good idea
to separate the generation of the stimulus from the acting on and checking
of the stimulus. We’ll look at this further in subsequent chapters, but for
now let’s look at the checker.

Once data have been injected into the chip, the checker recovers the
actual data output from the chip’s I/O and confirms that everything is as
expected. There are three parts to this process and, to promote adaptabil-
ity, the implementations of each part should be kept separate. The success

The Three Parts of Checking

of code adaptation can often be traced to how well these three parts,
summarized below, can be shaped to fit a new environment.

] The first part is the gathering of the data, usually by means of a
monitor. A monitor triggers on changes in some I/O, interrupt, or
FIFO level and converts these wire changes into verification
objects. By having a monitor that is separate from the checker,
you can change how the data are gathered without affecting the
checker. Also, by converting the data from wire changes to
integers and classes, you elevate the data by an additional level of
abstraction.

] The second part is a comparison of the actual data with the
generated data. This can be accomplished by providing the
method equal (). (Part IV of this handbook shows examples.)

] The third part of checking uses the result of comparison and
provides an indication of expected or erroneous behavior. The
simplest example is an error message or “check passed” message,
followed by a printout of the data.

In the checker class, be aware that the form of the data generated may
not be the same as the form received by the monitor. This is because data
packets may have been combined or split for a variety of reasons (for
example, because of the protocol, error correction, or some other trans-
formation). Creating an appropriate level of abstraction for a checker
can be difficult.

Sometimes there is more than one level of checker. This is common in
multilayer protocols, such as PCI Express, Ethernet, ATM, and USB.
Again, keeping the levels separate improves the code.

Sometimes there may be several monitors on the same chip I/O. This is
common because in the verification code a one-to-one relationship
between monitor and checker is the simplest, while in the HDL there are
no simulation limits on the number of monitors on a wire.

The checker should also check for dropped or missing data. The easiest
way to do this is at the end of the test, but it’s probably better to use the
latency of the chip as a filter, and report errors as soon as possible.

Checking consists of three parts: gathering data, making a
comparison, and acting on the comparison. Separating these
three parts is a “flexibility vs. complexity” trade-off.

An Object-Oriented Framework 185

Chapter 10: Designing with OOP

Separating the Test from the Testbench

186

It is common to have a few top-level parts to a verification system. These
include the HDL top, the testbench, and the test. The authors advocate
for another top-level component, the verification top (see the Layered
Verification Approach chapter earlier on). This section addresses the
roles and responsibilities of each part.

A major theme of this chapter is to show how clear roles and responsi-
bilities create simpler code. In general, for a single chip, try to have a
single verification top, one or a few HDL tops and testbenches, and many
tests. Because the verification top is the top-most component of any test,
always calling the same “dance,” it consistently executes the same steps
of creating, configuring, running, and shutting down the test.

The testbench is responsible for setting up the transactors, monitors, and
generators (under direction by the test), and building the global services.
The HDL top is responsible for the HDL wrappers around the chip, and
includes clocks, reset logic, and pin wires. In addition, the HDL top
probably contains muxes, assigns, or Verilog tranif! statements for
connecting verification interfaces to the chip. It may also have interfaces
for “power on” (to communicate with the boot I/O devices and enable
the initial state configuration of the chip). The test is responsible for
specifying the required verification components, traffic patterns, and
verification configurations, as well as what the “run” part of the test
should do.

Having a single testbench for a specific chip or system is useful, because
it sets up a common environment for all tests to use. This increases the
adaptability of the individual tests and verification components. Also,
because unit testing differs from full system testing, it may be necessary
to have multiple HDL tops; however, effort must be taken to ensure that
as many of the tests as possible can be run with any of the HDL tops.

Because a test must specify what configuration it requires, there is some
communication between the test and testbench, possibly before the chip
can be brought out of reset. This means that, while the verification top
creates the test, the test may make several calls to the global objects,

I The Verilog primitive tranif connects two bidirectional wires.

Summary

possibly including a verification components manager, to configure the
testbench.

As animplementation detail, the test may be created by a factory function.
(Factory functions are explained further in the Coding OOP chapter.)
This function, usually implemented in the source file that contains the
test, returns a base-class test pointer. The reason for using a factory
function is to incorporate unit-level tests into a full chip test, or many
tests into a single meta-test.

Sometimes this base test object contains all the verification components
and a basic structure for the test. This can be useful, but be aware of all
the types of tests, and don’t make the base test too complex.

A test can have a few standard components: the dance, the
testbench, the HDL top, and the test. Only the
implementation of the test should change.

Summary

We have started down the path of using OOP in a verification system.
We talked about the main theme, creating roles and responsibilities by
using abstraction. We talked about the common design biases used when
we design a verification system.

You probably are still surrounded by clouds of uncertainty. This is
understandable. The next chapters are more specific, talking about mak-
ing classes and the different ways to connect them.

For now, however, know that designing with OOP is about defining roles
and responsibilities and making levels of abstraction, a “layering” for
which there are many examples in our everyday lives. To achieve your
owndesign objectivesin silicon, use your experience to guide the process.

An Object-Oriented Framework 187

Chapter 10: Designing with OOP

For Further Reading

188

To help you think about how to construct a system with
abstraction levels that are logically consistent, a great book is The
Design of Everyday Things, by Donald A. Norman. Though it
does not deal with code or high-tech, it is great for thinking about
how someone else might develop a mental model of using your
code.

On the topic of connections between levels of abstraction and
within a level of abstraction, Software Engineering: A
Practitioner's Approach, by Roger S. Pressman, has several
pertinent sections. (The fancy term for these connections is
“cohesion and coupling.”)

Bjarne Stroustrup also provides a concise discussion of
abstraction in The C++ Programming Language, section 24.3.1:
“What do classes represent?”

The concept of “correct by construction” is from Edsger Dijkstra,
a pioneer in formal languages, specifications, and proofs for
computing. This concept is often used in formal verification, but
it is adapted here to show how design intent can be
communicated.

Regarding premature optimization, the original quote is from
Tony Hoare: “We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil.”
This was quoted in Donald E. Knuth, Literate Programming
(Stanford, California: Center for the Study of Language and
Information, 1992), 276. A web search can provide further
references.

OOP Classes

Experience is a dear teacher, but fools will learn
at no other.

Benjamin Franklin

Coming up with the appropriate classes for your project is an experi-
ence-based effort. In other words, the authors made many mistakes in the
beginning. To help you in designing classes, we have collected experience
from our previous efforts.

So do what the authors did when they learned SystemVerilog: find
examples, copy, and paste!

This chapter introduces the thought process for creating classes, to
answer questions such as these:

] How do I determine what is a class, and what is a method?
] How should I handle global functionality?

[] What can inheritance do for me?

Hardware Verification with SystemVerilog: An Object-Oriented Framework 189

Chapter 11: OOP Classes

Overview

190

Classes are fundamental to writing in an object-oriented language. But
how do we decide what is a class? We have talked about thinking in terms
of layers of abstractions. We have talked about roles and responsibilities.
The next thing is to start to name the classes and their responsibilities.
This is not as hard as it sounds. For one thing, you make classes as you
feel they should be, and there is no right or wrong way. Let each class
do what feels right to you. There will, of course, be some spirited team
discussions.

Once you decide on some classes, you can “wire up” instances of classes
pretty much like you create and “wire up” modules in hardware. Unlike
hardware, however, classes can have more “electricity.” When designing
hardware, you are restricted to connecting blocks through wires or
signals, but with classes you have the ability, among other things, to have
pointers to other class instances or call virtual methods. This is the topic
of several sections.

This additional freedom is where the electricity comes in. This is good,
because it helps you solve complicated verification problems. As with
any technique, the challenge is to use the appropriate amount of elec-
tricity.

Not that everything has to be a class. As we learned in the previous
chapter, SystemVerilog supports tasks and functions in packages, and
for many situations, this is appropriate. The section in this chapter on
Global Services talks about various ways to use global functions.

Defining Classes

Defining Classes

As object-oriented programming has been around for many years, there
have been many different attempts to explain how to define good classes.
In the end, it comes down to the usual way one learns: copy examples,
change the example a bit, and eventually start writing your own code.
After some time you will find your own way to “ride the OOP bicycle.”
That’s the reason this handbook presents lots of code snippets and
examples.

That said, a common way to define classes basically just follows the old
grammar school rules for writing a good sentence: make a class for each
noun in your design, and make a method for each verb. This means that
each block in your whiteboard design becomes one or more classes.
Drawing the lines between the blocks is a bit more tricky. At some level
these lines represent method calls, but they can also be classes them-
selves. That’s the great thing about OOP compared with HDL design;
you can use a variety of alternatives (more language constructs, more
techniques allowed by basic constructs) as you discover problems in
implementing the initial “obvious” whiteboard class design.

It is promising that the industry has finally settled on (more or less)
standard names for the most common classes. Names such as generator,
BFM, monitor, driver, and checker have become somewhat standard in
their meaning.

Making classes becomes only easier with experience. First
clone and modify existing code.

How Much Electricity?

SystemVerilog is a language that allows a reasonable amount of “elec-
tricity” in the code. The electricity in a piece of code is a measure of
how complex the code is. Recall that complexity is inherent in our world;
it’s the management of complexity that prevents complex code from

An Object-Oriented Framework 191

Chapter 11: OOP Classes

Classes

Packages

becoming complicated code (remember that complex is okay, compli-
cated is bad).

The goal of any OOP system is to design classes that have minimal
electricity. Anything more is just unnecessarily complicated.

Atthe lowest level of electricity are defines and macros. In order to figure
out the code, you have to figure out the value of the define. The next
level is “if” tests, which are dealt with in the chapter on Coding OOP.
The Verilog language has these capabilities as well.

The next addition of electricity consists of classes. The Verilog language
has the module concept, which is pretty close. Both modules and classes
unite data and algorithms. SystemVerilog and Verilog differ in that in
the former, the data can be classes, whereas in the latter, the data can
only be wires and registers. Furthermore, in Verilog modules represent
silicon, whereas in SystemVerilog, classes represent a wide range of
concepts.

Related to the concept of classes is packages. This is somewhat similar
to the package concepts of VHDL. Packages are useful in that they group
related enumerations, global functions, and constants together loosely.

(This was discussed in more depth in previous chapters.)

Pointers and virtual functions

192

Another increase in electricity relative to operator overloading is found
in pointers and virtual functions. These relatively simple features have
profound implications. The number of techniques that can be realized
with this electricity has spawned numerous books and papers. Remember
that at the implementation level, virtual functions are pretty much just
plain old pointers to a task or function. You may have used this technique
before in other languages.

Global Services

SystemVerilog provides many levels of electricity. Use
minimal electricity in your designs.

Global Services

OOP-based design is about using abstractions and defining roles and
responsibilities for specific classes. By using layers, as described in the
Layered Approach chapter in Part I, you can simplify the design and set
up a network of classes. For example, a monitor and a checker have a
neighbor relationship; the monitor takes data from the chip, and the
checker checks the data.

However, some roles and responsibilities are related to a large number
of other classes. Activities such as memory reads and writes, control and
status register (CSR) reads and writes, interrupt vector handling, and
message logging can reasonably be expected to be available to all classes.
There are many more examples. Roles and responsibilities that are
available to all classes are called global services.

A logical way to create global services would be to use a class for each
service. Then, pointers to these global service classes could be passed
to all other classes. However, in practice this is often a clumsy approach.
Passing the global service objects to the majority of all classes clouds
the code and adds little to the real information of a design. Used with
restraint, though, global service objects can extract the common compo-
nents from the mental baggage of learning a new design structure.

Package it up!

As we have seen, the authors prefer to use a package, or sometimes static
methods of a class,! to express the intent implicit in a global service. As
a result, any class can include the header file and then use the service.

For example, consider a memory package such as the following:

I Note that not all simulators support static functions yet.

An Object-Oriented Framework 193

Chapter 11: OOP Classes

Static methods

//in the file memory.svh

package memory;
extern task write (uint32 address, uint32 data);
extern function uint32 read (uint32 address);

endpackage

Note that read () and write () are memory functions. For this service,
any class can include memory.svh and start accessing memory through
these functions; no special rules or objects are needed. Each class access-
ing the memory functions still needs to use the memory package, which
gives the reader a way of finding the source of these functions.

Therefore, using packages can simplify a verification system while
keeping the source available in a central place. In addition, any class can
access memory without having to know about how the memory is imple-
mented.

Another way of presenting a global service is to use static methods. Using
the same memory example as above, you could instead declare the global
services in a class like this:

class memory;
extern static task write (uint32 address, uint32 data);
extern static function uint32 read (uint32 address);

endclass

The way to access the global service in this example is pretty much
identical to using a package, and the end results are similar.

Singletons—A Special Case of Static Methods

194

Instead of using all static methods in a class, you can use a single method
to get the one instance. After that single method is used to get a pointer
to the single instance, the accesses show up as with any other object.
This can be useful if you want to communicate that there is a class instance
performing the work. On the implementation side, it can make the
different implementations of the (previously declared) static methods
easier. At any rate, using this technique implies that there is more

Global Services

electricity than is the case with just a package or static methods. Let’s
look at the memory example again.

class memory;
extern static memory get ();
'"PURE virtual task write (uint32 address, uint32 data):;
'"PURE virtual function uint32 read (unit32 address);

endclass

The single static method, get (), is used to get the single instance of the
class. This technique is called a singleton. Notice that the readand write
methods are virtual. Let’s look at how this technique might be useful in
a burst memory class.

typedef uint32 data list[];
class burst memory;
extern static burst memory get ();
extern virtual task burst write (uint32 first address,
data list data);

extern virtual function data list read (uint32
first address);

extern virtual task write (uint32 address, uint32 data);
extern virtual function uint32 read (uint32 address);

endclass

The implementations of the read and write methods are probably
simpler now that a singleton is used. Otherwise, the read and write
methods would both have to deal with gaining access to the correct
memory.

Packages or static methods?

So why prefer one technique—packages or static methods—over the
other? The reason the authors prefer using packages is that packages are
more reasonable than static methods, because they are less complex.

With static methods in a class, you run into trouble when you need to
add a new static method. Doing this requires that you inherit from the
original class and add the new static method. Although using static
methods for global services is useful for more component-like services,
using a package is often easier than using a static class method. Never-
theless, despite this advantage of simplicity, there are times when you

An Object-Oriented Framework 195

Chapter 11: OOP Classes

want to bring to the code interface the fact that the implementation is an
object. That is when singletons may be appropriate.

Using packages is a good way to provide access to global
services, and it is less complicated than using static methods.
Although singletons are a good way to implement a global
service in a code interface, be aware of where the object is
created.

Other considerations

196

One last point before we move on. A global service, at the code interface
level, implies a logical single service. The actual implementation of this
service, however, may be vastly different behind the scene.

For example, to write to different memory addresses, several different
objects may be needed. This is because the memory space is probably
spread out across different chips—or at least across different interfaces
of a chip. Also, if you fold the register access into the memory access,
different register banks may communicate with different chips. Finally,
you may want front- and back-door access for the memory and registers,
which would require different objects to do the implementations. This
can all be an implementation detail for the end user. (To see an example
of this, refer to the implementation of the memory bank class in the
teal memory.svh file of Teal.l)

Another technique is to implement a singleton as a list of filters. This is
useful for purposes such as filtering logging messages. For example, a
logger might look to the classes that use it as a single object. The
implementation, however, may want to use a linked list of objects, where
each object is given the chance to modify the log message. This is a
powerful technique. (To see an example of this, refer to the implemen-
tation of the vlog class in the teal vout.svh file of Teal.)

Often there are global services in a verification system. Use
either packages or static methods to express them.

I Available at www.trusster.com.

Class Instance Identifiers

Class Instance Identifiers

When you start printing log messages, you have to decide how to identify
the object that is printing. This object identification provides a way to
trace the object through the system.

There are at least two techniques for identifying an object. One uses a
string (often the name of the instance), and a second uses some sort of
sequence counter. In practice, both techniques, as well as their combi-
nations, are used.

Strings as identifiers

As you move up in abstraction level, it will at some point be better to
have names for objects. These are most often placed in the constructor
of a class, as follows:

class fabric;
extern function new (string name);
local string name ;

endclass

With the class using a string for a name, it should be easier to print useful
status messages. Because the name is passed in, it is easier to make a
unique name reflect its use in the chip.

Static integers as identifiers

Sometimes it’s too cumbersome to use a string as an identifier for an
object. Also, the name, while unique, does not indicate a sense of
sequence between consecutive objects.

For example, often a generator creates a sequence of objects, as in, say,
a number of Ethernet packets. In this case, it may be appropriate to name
the instances with an incrementing integer, such as packet 1,packet 2,
and so on.

Having sequence numbers can be useful as a triggering mechanism for
trace types of logs, or for postprocessing the log file. This is done by

An Object-Oriented Framework 197

Chapter 11: OOP Classes

making the counting integer static; this declares a class-level “shared”
integer, and increments it for each instance of a class.

Here is an example:

class data packet;
function new (); my id = ++id ; endfunction

local uint32 my id ;
//count of data packets created,

//starting with 0
static local uint32 id ;

endclass

Then, in the data packet.sv file, you can use the id in the name of
the object.

Combination identifiers

In practice a combination of these techniques is often used. For example,
you may want to prefix the sequence number with a name, which can
identify the higher-level sequence (such as short packet 43, or

Device 7: packet 10 Enumeration Phase).

Identifying aninstance should not be an afterthought. Often,
a string is sufficient. For sequential instances, a static
counter can be useful in tracing an instance in the log file.

Class Inheritance for Reuse

198

When you start to name and build classes, there is a tendency to find
commonalities in roles and responsibilities. While this is certainly a good
thing, resist the urge to define base classes right away. There are many
ways to express common roles and responsibilities. Use base classes only
when you have experience from several designs, or when you are actually
coding and can use base classes to solve a problem. With these caveats
in mind, let’s look at inheritance and how it can help to make code more
adaptable.

Class Inheritance for Reuse

In verification we have to drive and monitor the signals of the chip to
exercise a protocol with what is commonly called a bus functional model,
or BFM. One side of the BFM is connected to the data generators and
monitors; the other side is responsible for driving and monitoring the
wires of a chip’s interface.

It is good practice to separate the actual driver or monitor into two
separate code interfaces. One is the data generator or monitor code
interface, and the other is the BFM code interface. This is an inherent
separation point, because there is a conversion between abstraction layers
from “send packet #3” to the actual wiggling of the wires. This separation
minimizes the assumptions about how the BFM does its job.

This separation is a good use of inheritance.! The authors call the base
class that wiggles the wires the BFM, and the inherited class that deals
with interfacing with the generators and monitors the BFM agent.

A BFM base-class example

Consider a chip interface for sending and receiving packets. The base
class might look something like this:

typedef class packet;
virtual class bfm;
extern function new (/*interface to the wires*/);
extern virtual task start (); //start the receive thread
//This is the driver part of the bfm ...
extern task send packet (packet p);
//This is the monitor part of the bfm ...
'PURE virtual task packet received(packet p);

endclass

The packet received() is declared as a pure virtual method, so it must
be implemented by the inheriting class. This is because the BFM should
not know what to do with a completed packet, but just focus on how to
drive the data.

I There are other techniques for this natural separation. You also might just want
to own the BFM.

An Object-Oriented Framework 199

Chapter 11: OOP Classes

A BFM agent class

Now an inherited class can add channels (one for “received” and one for
“send”) to convert from packets to commands, and vice versa. The
inherited class would look something like this:

class bfm agent extends bfm;

extern function new (<two channels, virtual interface>);
extern virtual task start ();
//start BFM and then thread

//to get data from the send queue
extern virtual task process send command ();
extern virtual task packet received (packet p);

endclass

Reusing the BFM class

200

We could have just lumped the bfm agent and bfm into one class.
However, with two classes the responsibility of each is better defined,
although things can become a bit more complex.

When another project comes along with a chip that has the same BFM
interface, but that accepts only a small fixed set of packets, the new test
team can still use the bfm class and write a simpler bfm_agent. Also,
because the new bfm agent class is so simple, they might decide to
include the checker directly as part of the agent class, and not use a
channel at all.

If the team so decides, their project can still reuse all of the existing bfm
class code by justinheriting from the BFM with a new, simpler, combined
generator/checker class. This is why dividing models into layers of
classes is a good idea.

Using inheritance to adapt code can preserve working code
and still add features.

Class Inheritance for Code Interfaces

Class Inheritance for Code Interfaces

The previous idiom of using inheritance for reuse is common. We can
take that to the extreme, and instead of reusing the implementation, reuse
the code interface only. This is more useful than it sounds. In fact, this
technique is very powerful. You can use the code interface of a class to
communicate exactly what the classes in the hierarchy can and cannot
do. This helps a reader of the code build up a “mental model” of the
system. You can only call the methods defined in the base class—no
more, no less.

For example, as shown in the Part II of this handbook, a common design
for a testbench is to have a top-level procedure that builds a number of
high-level, independent verification components (usually related to the
major interfaces or features of the chip).

In order to manage the complexity of the verification system, it is
important to have common base classes for these major components, so
that all the components in a verification system behave in a similar,
predictable way. If each major component is built in a unique way, it
soon becomes too difficult to manage the overall environment.

Inheritance for a verification component

Let’s look at the following verification component class:

virtual class verification component;

'"PURE virtual task initialize ();
'"PURE virtual task start (); //forks threads
endclass

Now lots of common verification components can express themselves as
an inherited class, like so:

class test extends verification component
class bfm extends verification component

class monitor extends verification component

By having all verification components inherit from the
verification component class, one can understand that each class can

An Object-Oriented Framework 201

Chapter 11: OOP Classes

at least be initialized, started, and stopped, because these are pure virtual
methods that exist in the base class.

Inheritance for a payload code interface

Because using inheritance for code interfaces is so common, let’s look
at another example. In verification there is often a payload of data that
travels through the system. The data must be random, printed out at
various times, and compared with the initial data sent in. If the chip had
an Ethernet protocol, for example, there could be an inherited class that
extends the base payload data class into an Ethernet payload class.

Here is what the base payload class might look like:

virtual class payload base;
'"PURE virtual task report (string prefix);
'PURE virtual task do randomize ();

endclass

Note that the payload base class has no data; because this is a generic
base class with no data, there is no constructor.

The base class declares two virtual methods, one intended for printing
and another intended for randomizing the payload of any concrete class.
For an Ethernet packet the base class could be used like this:

class ethernet data extends payload base;
virtual task report (string prefix);
for (int i=0; i < data.size (); ++i) begin
teal::vout log = new ("ethernet");
log.info ($psprintf ("%$s data[%0d] %0d", prefix,
datalil]));
end
endtask
virtual task do randomize ();
'for each (data , 'RAND 8);
endtask
extern task put to DUT ();
local bit[7:0] data [];

endclass

202

Summary

Shown above is an ethernet data class that inherited from the
payload baseclass. Asrequired, this new class provides specific imple-
mentations of the print () and do_randomize () methods. It also adds
a new method, the put_to DUT () method.

The ethernet data class also adds the put to DUT () method, which
is intended to transfer the payload to the chip.

These three methods—print (), do_randomize (), and
put_to_ DUT ()—are the only things you can do with an instance of an
ethernet data class.

Note that you cannot restrict the use of a base class by inheritance. By
definition, anywhere a base class is used, an inherited class can also be
used.

Inheritance can be used to communicate exactly what an code
interface can or must implement.

Summary

This chapter covered a rather broad range of topics. We talked about how
to look at the verification environment and see that the nouns are classes
and the verbs are methods.

How much “electricity” your design needs was covered next. The basic
levels of electricity can be seen as defines, macros, the “i£” test, classes,
packages, operator overloading, pointers, and virtual functions. Each
step increases the complexity, or electricity, of the code. The idea is to
use only the minimal amount of electricity needed.

We then moved on to meta-class-level concepts, such as global services
and static methods. Here the idea was that sometimes things really are
global.

Class inheritance was looked at in detail. Inheritance is an extremely
important OOP concept. By using class inheritance, you can both enforce
intent and extend an implementation.

An Object-Oriented Framework 203

Chapter 11: OOP Classes

For Further Reading

As we stated in the For Further Reading section of the Why SystemVer-
ilog? chapter, there is a growing number of books devoted to coding in
SystemVerilog. Skim many, buy a few, and copy code where you can.

Web searches can also be useful.

204

OOP Connections

Oh what a tangled web we weave,
When first we practice to deceive.

Sir Walter Scott, Marmion. Canto vi, Stanza 17

Connecting classes together is more important than the classes them-
selves. How can this be? It is so because, by definition, the connecting
of classes involves jumping around in the code base. Managing this is
mentally more difficult than simply managing the code within a class.
For example, when you see a class name in a method call, you have to
think about why the method needs that class. The answer depends upon
whether the system is a tangled web or a well-architected series of
connections.

Often you have to find the header file for the class and go look at the
implementation of the method. In the worst case, the code makes no sense
whatsoever, even after you stare at the implementation. In the best case
the connections are obvious, such as when a test is passed the class name

of a testbench.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 205

Chapter 12: OOP Connections

Overview

206

In hardware design we connect modules together and worry about clock
domain crossings. With verification, we connect instances of classes and
methods together and worry about crossing the threads of execution. In
addition, the connections in verification may be temporary (for example,
they are used only within a method), or they may be permanent (for
example, when a constructor takes in the name of a logger instance and
stores it in a data member).

Connections in your code can either form a spider web of complicated
and confusing relationships, or they can be a highway, with well-defined
points that connect to other roads. Recall that one person’s web is another
person’s highway, so picking the right connection technique may not be
universally appreciated. There are many connection techniques and con-
sequently, as this chapter shows, trade-offs to be made.

We first discuss the various types of connections, then look at implemen-
tations of these connection types. We then present the simpler connection
types first, increasing the complexity of the connections as the chapter
progresses.

We first look at how to classify connections. The type of connection is
evaluated according to how much information one class has about
another. At one end of the information scale, classes have no mechanism
to determine whether any other class instances are connected. At the
other end of the scale, a class has a pure virtual method that must be
implemented to make the connection.

The idea is to build the appropriate type of connection for the problem
at hand. Too loose a connection makes code unnecessarily complicated.
This because loose connections make few assumptions about the other
side, which in-turn makes tracking events harder. Connections that are
too tight, on the other hand, may make code harder to adapt.

While these connection techniques are general, some of them can be used
between verification components operating in different threads. Why
bring threading into the discussion? In verification systems many events
need to happen in parallel. This is normally done through threading. With
threading, however, comes a set of problems related to accessing common
data. How can a thread be given sole access to a common resource? How

How Tight a Connection?

can one thread synchronize with another? To solve these problems,
thread-safe connections where created. This chapter will show tech-
niques to cross thread boundaries.

How Tight a Connection?

Once a verification system has been divided into classes, the next step
is to think about how tight the connections among those classes should
be. As we have seen, this is a sliding scale, with trade-offs in complexity.
A loose connection creates good flexibility but more complex code. A
tight connection is easier to understand but harder to adapt when changes
occur. As a result, each side of the connection must make assumptions
about the other.

Let’s look at two points on this scale. Consider a generic data generator
and data checker. An obvious way to connect these two components is
to have one component have a pointer to the other. For example, you
could code the connection like this:

class data checker;

extern task note data generated (uint32 some data);
endclass
class data generator;

extern function new (data checker checker);

endclass

Then you can use the checker and generator like this:

data checker checker = new ();

data generator gen = new (checker);

The pointer example above is considered a tight connection. This is
because the actual name of one class is given to the other class. Tight
connections are obvious and direct, yet they are not always appropriate.
They make the code brittle and difficult to modify if the assumptions
about either class change. Tight connections are, however, the most
commonly used and most appropriate for the common interconnections.

An Object-Oriented Framework 207

Chapter 12: OOP Connections

208

Note that the situation could have been reversed, with a pointer to the
data_generator given to the data checker. However, in practice the
assumptions regarding the number of interconnections are not the same.
Often there are several different types of generators, yet usually there is
only one checker for a given interface or feature. The number of connected
instances is something to think about when you connect classes. It is
easier to have many objects point to one than the other way around.

The looser a connection is, the fewer the assumptions that can be made
about it. For example, to continue with the above example, one could
instead use an intermediary object to manage the connection. The authors
call this a channel. In this case, you can give the channel object to both
the checker and generator, as follows:

class channel;
extern task put data (uint32 data);
extern function uint32 get data ();
endclass
class data checker;
extern function new (channel expected);
endclass
class data generator;
extern function new (channel output);

endclass

Then you can use the checker and generator like this:

channel a channel = new ();
data checker checker = new (a_channel);

data generator gen = new (a_channel);

This is a loose connection, because the generator does not know that a
checker exists. The generator simply generates data for the channel.

Here is an interesting implementation complexity brought about by our
new channel connection. What does the checker do if the chan-
nel::get data () hasnodata? Questions such as this are not necessarily
a bad thing; if they are asked in the early coding phase, the resulting
code tends to be well thought out. Channels are an important interconnect
technique, and are discussed in detail in a later section.

Types of Connections

Sometimes tight connections are appropriate, but at other
times looser connections give the appropriate flexibility.

Types of Connections

Now that we have talked about the tightness and looseness of a connec-
tion, let’s look at the two basic types of connections. One is the peer-to-
peer connection, the other the master-slave connection.

Peer-to-peer connections

The peer-to-peer connection occurs when a group of modules are all able
to communicate with each other at any time. They may be arranged in
various topologies, such as a ring, star, or bus. This type of interconnec-
tion usually follows a message-passing scheme and can be tricky to
debug.

The Controller Area Network (CAN) protocol is an example of a peer-
to-peer interconnect. Any device can initiate a transfer, and the message
has the priority, not the sender.

Peer-to-peer connections are not often used in verification systems,
because we tend to design systems with a controller in mind. This type
of connection is discussed in the next section.

True peer-to-peer connections allow multiple masters and
shared communication.

Master-to-slave and push-vs.-pull connections

Contrary to the peer-to-peer connection, most verification components
communicate in some sort of unbalanced connection, such as master-to-
slave. The master initiates an action—either pushing some data to the
slave, or demanding/pulling some data from the slave. In either case, the
slave must respond.

A push connection occurs when one module tells another module to take
some data. A common example of this is a generator putting some data

An Object-Oriented Framework 209

Chapter 12: OOP Connections

210

into a queue for a BFM to send. The master, in this case the generator,
is at a higher layer of abstraction, as opposed to the BFM agent, which
“simply” directs the BFM to execute the transaction.

The pull form of the master-to-slave connection occurs when one module
calls another to get some data. For example, a generator might need to
combine data from several sources to form a complete data packet. A
specific example of this is when several logical channels share a physical
interface. Both the UTOPIA! interface and USB interface use this
approach.

The appropriate choice of push versus pull is situation dependent. If a
connection seems awkward, often reversing the direction of the connec-
tion simplifies the code a lot. The general rule is to minimize the number
of connections, as well as the assumptions about the connections. If you
are uncertain about which type to use, bias your design towards push
connections. This is because the decision regarding what to do with the
data (for example, whether to send data through a chip interface) is often
simpler and of a lower abstraction level than the generator of the data.

Note that at the monitor level, the push is from the monitor towards the
checker, because the monitor does not need to know about the recovered
data’s eventual use. Again, the idea is to minimize the assumptions about
an interface.

The following sections are all generalizations of the push/pull intercon-
nection technique.

Most class connections are either push or pull. If the code
seems clumsy, try reversing the direction of the connection.

I Universal Test and Operations Physical Interface for ATM.

Two Tight Connection Techniques

Two Tight Connection Techniques

The tighter the connection, the simpler the connection tends to be. This
is because the techniques for these connections usually name the class
or method that is to be used. This is appropriate for a large number of
the connections in a verification system. Let’s look at two of the most
common techniques: using pointers and inheritance.

Using pointers

Pointers in a project are as common as ones and zeros. So why talk about
them? In SystemVerilog, pointers per se are not explicitly used. Rather,
class instances themselves function as pointers, and therefore can contain
data or connect different classes. Specifically, in certain cases it’s more
reasonable to have two classes implement a task than one. This is common
when you are crossing abstraction layers. In one case, one side of the
connection has some data but does not want to know how the data will
be used. In another case, one side of a layer needs more information to
complete a task. In both these cases, it might be reasonable to express
the “other half” of a task as a separate class. To clarify this, let’s look at
a specific example.

Suppose a monitor can gather some data, but because we want to separate
the data gathered from any processing of the data, we decide to use a
pointer to another class. Here, the monitor could take in a pointer to the
other class to “handle,” or manipulate, the data, as shown below:

class handler;

extern virtual task check (int data);
endclass
class child monitor;

function new (handler p);
handler = p;

endfunction

task data received (int d);
handler .check (d);

endtask
local handler handler ;

endclass

An Object-Oriented Framework 211

Chapter 12: OOP Connections

As we can see, using a pointer to another class minimizes the assumptions
regarding what happens to the data.

Consider using pointers when abstraction layers must be
crossed. Be careful of what each side of the layer “knows.”

Using inheritance

Another way to pass the results of one function to another is to use
inheritance. While inheritance is a very tight form of connection, it can
be very clean and provide good separation between roles and responsi-
bilities. Inheritance can be used as the initial connection, while a looser
technique can be used to complete the connection. (This two-step
approach to connections is used in almost all the examples in Part IV of
this handbook.)

But let’s look more closely at the concept of using inheritance for
connections.

As an example, consider a base class that contains a verification com-
ponent’s algorithms that either consume or generate data. With this
technique there would be pure virtual methods to create or use the data;
an inherited class would be responsible for providing or consuming the
data.

Let’s look at how you might create a generic checker base class and
how you could use inheritance to make the connection to a “real” checker.

virtual class checker;
task start ();
fork begin
teal::vout log = new ("Checker");
forever begin
data expected = next expected dataf();
data actual = next actual data();
if (!expected.equal (actual))
log.error ("Expected: %$s != Actual %s”,
expected.sreport (), actual.sreport())):;
end
end
join none

endtask

212

Two Tight Connection Techniques

'PURE virtual task next expected (out data d);
'PURE virtual task next actual (out data d);

endclass

Now you can define a “real” checker:

class uart checker extends checker;
function new (uart generator g, uart monitor m);
super.new ();
generator = g;
monitor = m;
endfunction

virtual task next expected (out data d);

d = generator .next ();
endtask
virtual task data next actual (out data d);
d = monitor .wait for next data ();
endtask

local uart generator generator ;
local uart monitor monitor ;

endclass

Note that the base class, checker, has no knowledge of how the data are
gathered. This type of connection can be good for separating the respon-
sibility of getting the data from the responsibility of checking the data.

Inheritance is well-suited for the initial connection to the classes outside
the base class. In this example, the uart checker is connected to both
a generator and a monitor and is waiting for the data. A different imple-
mentation class could connect to queues of data. Still another implemen-
tation class could use the generator, but for the monitor it would wait for
an event and then read the received data from the HDL.

The same two-step technique could be used to minimize the connection
assumptions that need to be made for a BFM or monitor. A pure virtual
method could be used to consume the data. One subclass might put the
data into a channel, while another might filter for special packet process-
ing and then send the data to a specific checker on the basis of this
processing. The XON/XOFF processing of the UART interface is a good
candidate for this type of connection, as is the processing of Ethernet
multicast packets.

An Object-Oriented Framework 213

Chapter 12: OOP Connections

Inheritance may be a way to defer the specific
interconnection mechanism and thus be useful— or it can add
complexity, if only one type of interconnection subclass is
used in practice.

Threads and Connections

As we discussed in the overview, verification systems use threads in
proportion to the concurrent activities in the chip. Therefore, it’s natural
to build verification systems that mirror this parallelism. To make the
connection between the independent threads, we need a connection that
can pass data between threads. This is called a thread-safe connection.
We’ll talk about the base thread safety mechanism, the event, and then
move on to fancier thread-safe connection techniques.

Events—explicit blocking interconnects

We now shift our focus from the general types of interconnect to those
that can cross a thread boundary. This is important because we use threads
often in verification.

Most threads are synchronized by an underlying “wait and signal” mech-
anism. This is done by an object called an event. An event blocks a calling
thread until another thread signals that the event has occurred. This
technique is the building block of most higher-level interconnect mech-
anisms, but it can be useful as a technique by itself.

One thread waits for an event to be signaled, while another thread signals
the event. This is a good mechanism for coordination, because the waiting
thread needs to know only the name of that event. Note that the signaling
of the event generally indicates that the other thread has entered a desired
state being waited on.

For example, consider a protocol error generator. This error generator
forces the wires of an interface to an illegal value during a specific phase
of the wire protocol. In order to achieve this, the error generator needs
to know the phase of the protocol. It can do this by explicitly monitoring
the wires, but it is better to separate roles and responsibilities by using

214

Threads and Connections

a separate monitor. The monitor is responsible for providing events that
trigger on the beginning of the different parts of the protocol. The
generator just has to decide what part of the protocol to corrupt, and
when, then wait for the specific monitor event. After the event is signaled,
it can force the wires into an illegal state until the next protocol state is

signaled.

This is shown in the example below, which creates errors in the Cyclic
Redundancy Check (CRC) phase of the protocol.

class protocol monitor;
teal::latch! crc phase begin; //CRC is detected
endclass
class crc_corruptor;
function new (protocol monitor pm);
protocol monitor = pm;
endfunction
task start ();
forever begin
protocol monitor .crc phase begin.pause ();
//Now force the wires to corrupt the CRC
end
endtask
local protocol monitor protocol monitor ;

endclass

After the crc_corruptor is hooked up to the protocol monitor, the
crc_corruptor is started. The latter then waits for the signal from the
monitor and then trashes the CRC. We have separated the protocol
specifics from the desired action.

Note that there are no data other than the fact that the event occurred.
The fact that the event occurred is all that is needed in this example.
However, this can be limiting, as threads often exchange data on the basis
of some coordinating event. This issue is solved in the following sections.

Events are useful as a form of a connection, because the data
exchange is minimal. Make sure that the triggering of the
event is all that is really needed.

I'Ateal::latchisa slightly fancy event. It is described in the Teal Basics
chapter.

An Object-Oriented Framework 215

Chapter 12: OOP Connections

Hiding the thread block in a method

216

Instead of a just using an explicit event for the connection, consider
hiding the event behind a class method. This is called a blocking method,
because the method blocks the calling thread. By using this technique
you can associate data with the event. Also, the event is now abstracted
into a method.

Moving to a blocking call makes coding sense, because the choice of
using an event, an HDL wire, or a set of events is now up to the
implementor of the class. It also simplifies the interface, because method
calls are a standard way of communicating. The fact that the call is
blocking can almost be an implementation detail. This can make the code
clearer or more confusing, depending on whether a user of the class can
reasonably expect that the code will block. Sometimes this blocking can
be implied by the method name.

As an example, assume that a protocol monitor has the method
wait for start of frame().Becauseofthe“wait for”inthename,
one can assume it will block the calling thread. Now the monitor is free
to implement the method in any way that best fits a specific design.
Perhaps it has an internal event called start of frame event thatis
triggered by an internal thread. An alternative implementation might
have aninternal bit variable start of frame ,andpollitonthe positive
edge of a clock. Still another implementation might be an internal state
machine and a single event that indicates a change in the state. The point
is to separate the interface from the implementation, minimizing the
implementation assumptions.

Another variant on the blocking method is to use an overloaded method,
commonly called pause() or trap (). There will be several
pause_<name> () methods, each with a different pointer to an object that
specifies the event desired and the data to be returned.

Continuing with our monitor example, suppose the monitor supported
three blocking methods: waiting for start of frame, waiting for start of
data, and waiting for completion of the data packet.

Fancier Connections

The following is an example code interface:

class start of frame;
uint32 frame number;
endclass
class start of data; //just a class, no data needed
endclass
class data complete;
uint32 datal];
uintlé crc_16;
endclass
class monitor;
extern task wait frame (output start of frame sof);
extern task wait data (output start of data sod);

extern task wait data complete
(output data complete dc);

endclass

This method has the advantage of using a naming convention to show
that the methods are related and that blocking semantics are used.

Using a blocking method is often better than using an explicit
event. Make sure the method name conveys the block, if the
block is not just an implementation detail.

Fancier Connections

The connection techniques discussed above provide a good basis for
fancier, more complicated connections. So why did coders invent these
fancier connections? The techniques discussed below are combinations
of the basic ones, and are used to express the coder’s intent better.
Although you might not use all these techniques all the time, it is good
to have them in your bag of tricks.

An Object-Oriented Framework 217

Chapter 12: OOP Connections

Listener or callback connections

218

Sometimes you do not need a two-way connection, but just need to “listen
in” on another object. A technique for this type of connection is called
the listener, and is sometimes also called the callback.

Why two names for the same thing? Programmers often used the term
“listener” when they are viewing the architecture from outside of the
class to be listened to. Programmers use the term “callback” when they
are speaking from the other side, from the class with the interesting data.
Confused? Don’t worry, this is not a technique that we recommend or
use often, as we explain below. We’ll use the term “listener” throughout
this section.

Listeners are objects that are called at specific points in another object’s
methods. Often the two objects are unrelated, although often a pointer
to the calling object (the one with the interesting data) is passed.

Remember our monitor example, which had a “start of frame,”

s

“start_of data,” and “data completed” thread synchronization
points? Instead of an object representing just the interesting synchroni-
zation points, there could be generic listener objects that would be called
at many points in the monitor’s state machine. An interface could be like

the following:

typedef class monitor;
virtual class action;
'"PURE virtual do action (monitor m);
//perform action, with monitor state as needed.
endclass
class monitor;
uint32 current frame;
extern task add start of frame listener (action a);
data current data;
extern task add start of data listener (action a);
extern task add data complete listener (action a);

endclass

Note that this is functionally equivalent at a high level to what we had
in the previous section. However, in this case, instead of a blocking
method, an object’s do_action () is called. This may make the intended
task easier or harder, depending on the task.

Fancier Connections

If the listener’s task is relatively self-contained, as with incrementing a
counter, this technique is straightforward. If, instead, the task is to
implement some high-level algorithm and that code case’d on several
of these state changes, the multiple listeners needed would be an
extremely clumsy way to express the algorithm.

This technique can also be used when the author of the original code
cannot allow an inheritance-based interconnect, or you cannot get access
to the source code.

There are several variants of this technique. The listeners could each
have their own class, be separated into pre- and postmethod listeners, or
act as filters for some data.

As a rule, use the listener/callback interconnect only when
you are relatively sure where to put the callbacks. In
addition, ensure that there are many simple, loosely
connected actions.

Channel connections

A channelis aconnection technique that manages a queue of databetween
two or more objects. It is a fancy way to pass the data between classes.
The technique is a loose form of connection, because both sides interact
through an intermediary.

Channels usually handle the crossing of thread boundaries. One verifi-
cation component places data into the channel, while another compo-
nent—possibly at a later simulation time and in a different thread—
consumes the data. One side of the connection has no knowledge of or
assumptions about the other.

While channels can complicate debugging, there are many situations
where they are a necessary trade-off. For example, a generator usually
has to send the data to both a BFM and a checker. This can be accom-
plished by having a channel replicate its data into two channels. As far
as the generator knows, it is sending data into only one channel.

Another example occurs when two or more verification components want
to send data to a third component, such as a transactor. You can create a

An Object-Oriented Framework 219

Chapter 12: OOP Connections

channel that takes input from any number of channels and merges the
data into a single channel.

Note that a common channel behavior is that the thread consuming the
data waits for the data to become available. In this case the channel
implementation uses an event.

A channel is specific to the data it contains. In OOP terminology, a
channel is a container class. Container classes are good candidates for
templating.1

Channel connections are very useful in verification. They are
a loose, thread-safe mechanism for connecting a number of
components together.

Action object connections

220

Sometimes just having a channel with data is not sufficient for what you
want to express. In this case you need to have an object that can “do”
something. Maybe the object makes some configuration calls to a BFM,
or it just sends a burst of data. In any event, this more active connection
is called an action object connection.

This method of connection combines the channel and the listener tech-
niques. Even though the data in the channel connection are objects, the
idea here is that the channel generally contains passive data. With active
object connections the channel can contain both control and data. This
can lead to code that is obscured and hard to find, and therefore hard to
reason about.

With the use of action object connections, there is a channel or queue of
objects, each with a listener type of action object, and a single method:
do_action (). Various objects create these action objects and place them
in a command queue. The owner of the queue pops the action object off
and calls its do_action () method. This method usually calls some
configuration methods in the target object and probably also a put () or
get () method. In this way arbitrary sequences of control and data can
be queued.

1. Be careful with templating, as all vendors currently support a subset of the
SystemVerilog language.

Summary

Action object connections can be used to synchronize control and data—
a good thing when you want to encode configuration settings, and have
a generator create sequences of configurations and data using those
configurations. However, although a large number of chips can accept
configuration changes with data flowing, make sure that capability is
intended to be used in production software.

The authors have rarely used the action-object connection technique, but
it has proved useful for complex sequencing problems.

Using action object connections in a channel for the complex
sequencing of a chip may be appropriate for testing a CPU
or graphics chip, but it is probably overly complex for testing
an interface or feature.

Summary

In this chapter we have explored various ways to connect classes. Which
technique should you use? It all depends on the problem you are trying
to solve. Different connection techniques have different trade-offs. In
general, try to use the tightest connection you can, because that will be
the most obvious connection.

We talked about the two most common forms of connection, pointers and
inheritance. Note that the pointer is an instance-based concept, while
inheritance is a class-based one. The significance of this is that the class-
based technique is static, and thus slightly simpler.

Using events is a good technique to let one thread know when another
thread has changed state. Events are fundamental to thread-safe connec-
tions.

You may decide to hide the event by using a blocking method call. This
is a good technique for loose connections, such as between monitors and
error injectors.

Not surprisingly, the most common connection technique (besides point-
ers) is to pass queues of data. A channel, a common implementation of
this technique, crosses thread boundaries and separates the producer of

An Object-Oriented Framework 221

Chapter 12: OOP Connections

some data from the consumer. It also allows for clever techniques, such
as replicating the data to another channel and filtering the data to add
errors.

The final technique we looked at was called active object connections.
These are used when you need to mix control and configuration with the
data. As with listeners or callbacks, this approach can be a slippery slope.
Although everything can be expressed in a mixed control and data
channel, just make sure you use only what is needed.

For Further Reading

222

(] On the topic of connections between levels of abstraction and
within a level of abstraction, Software Engineering: A
Practitioner's Approach, by Roger S. Pressman, has a several
relevant sections. The fancy term for the connections is called
“cohesion and coupling.”

] The authors are aware of several books and papers on different
connection techniques. None are landmark or stand out as “the
best” way. As with learning SystemVerilog, this is more of an
impedance matching issue, with some books and papers better
matched to your learning style and experience level than others.

Coding OOP

C HAPTEWR 13

Beauty is in the eye of the beholder.
Common paraphrasing of Plato

Coding is a personal endeavor. For many of us it’s similar to creating
art, and as with any art, there are many styles—some loved, others
detested. Why is this relevant to coding? Well, because unlike the case
with art, our code cannot stand alone. We are in the interesting position
of creating art that, by definition, must work in a community.

Not many engineers intend to create complicated, stand-alone code. This
chapter shows techniques, tricks, and idioms that you can use to com-
municate your intent. When your code is clear and transparent, other
engineers can more easily understand, and appreciate, your intent. Code
that is appreciated is more likely to be used appropriately, adapted, and,
most important, integrated well with the rest of the system.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 223

Chapter 13: Coding OOP

Overview

This chapter shows some of the coding techniques we can use to create
our art. This, the last of the OOP chapters, talks about the coding going
on inside a class. Of course, what’s going on in a class is related to the
class structures and interconnects around the code, so we will not limit
our discussions to the lines of code in a method. Rather, we focus in this
chapter on coding.

Our first focus is on “if” tests, with a discussion on why this necessary
coding construct complicates the code. We’ll show some ways to mini-
mize these “if” tests.

We then discuss ways to get your point across, using coding tricks and
idioms. We also look at the touchy subject of coding conventions, and
try to point out where they help and where they hinder.

The previous part of this handbook used many different techniques, so
we figured that one more look, concentrating on when to use individual
techniques, might be useful.

“If” Tests—A Necessary Evil

224

The fewer “if” tests a segment of code has, the easier the code is to
understand. Code that just does step one, followed by step two, and so
on is inherently easier to reason about. An “if” test, by contrast, causes
us to think some more. Is the condition true? Will the code set something
up that I have to remember? Where was this condition set?

This section looks at ways to minimize “if” tests in your code. Of course,
there will always be “if” tests in code; the goal is to find the place to put
them so that their presence is reasonable and maybe even expected.

To put this more generally, writing code consists of procedural statements
and changes in control. The mix of these components two dramatically
affects the complexity of the code and its adaptability. Procedural state-

ments are just unconditional expressions followed by a ““; ”—for example,
in function calls or mathematical statements. Because the processor

“If” Tests—A Necessary Evil

always executes the statements in order, it is not difficult to understand
the control flow.

By contrast, changes in control increase the “mental state” that must be
remembered. One must now consider two paths through a block of code.
These changes in control can be looping constructs, “if” tests, “switch”
statements, or “?” operators. This section is primarily concerned about
“if” tests. Loop constructs can be considered as combinations of an “if”
test. “Switch” statements can be considered as restricted implementations
of “if” tests, so they are simpler, but still not as simple as procedural code.

The question mark operator is somewhat like an “if” statement, but, in
practice, is best relegated to assignment statements, such asina = (b
> 4) ? 10 : 62.In this case, because it is a common idiom, the operator
does not increase the mental complexity of the code.

“If” tests, while necessary, can complicate the code. Using
them where they make sense is tricky.

“If” tests and abstraction levels

Almost all algorithms have “if” tests as part of their definition. Algo-
rithms at the BFM/monitor level are probably best implemented with
these “if” tests. However, as the abstraction level increases, the number
of “if” tests should decrease. This is because “if” tests make it harder to
reason about the code. At the higher levels, the code should be fairly
straightforward.

If there are “if” tests at the higher levels, they should be more of a
“presence or absence” test, as in the following:

An Object-Oriented Framework 225

Chapter 13: Coding OOP

if (scenario::provide jtag traffic ()) begin
jtag jtag stimulus = new ();

end

These kinds of “if” tests still raise questions, but questions that should
be more easily answered.

At the high level, the “if” test should be rare.

“If” tests and code structure

226

Be careful about using “if” tests whose body exceeds a few lines. The
body is the part of the code that is affected by the “if” test. This can
complicate the understanding of the code, because the structure of the
algorithm is obscured. The authors have pondered many examples of this.

Sometimes the “if” tests are preventing the last inner code block from
executing. A common example of this occurs when you have a series of
conditions that must be met (perhaps stages in some protocol) before
you execute the inner code. In this case, consider using return statements
on the inverse of the conditions to weed out these large blocks of “if”
tests.!

Let’s look at a specific example. Here is a function that has to process a
packet of data:

task my class::handle packet (packet a packet);
if (a_packet.valid()) begin
if (i_am enabled) begin
if (we_are in sync) begin
packet count += 1;
if (system::error level (1)) begin
//...the algorithm here...
end
end

end

L This is yet another case where the academics differ from the industrial coders.
You may have been taught “there is only one return from a function,” but this
rule—Ilike all rules—works best if applied with intelligence, not dogma.

“If” Tests—A Necessary Evil

end
endtask

Instead, consider this reorganization of the code with a negation of the
original condition:

task my class::handle packet (packet a packet);
if (!a packet.valid ()) return;
if (!i am enabled) return;
packet count += 1;
if (!system::error level(l)) return;
//...the algorithm here...
end
endtask

In this case the algorithm is clearer. There are some preliminary tests,
and, if they pass, the main algorithm is performed. This allows you to
forget the “bad” cases and concentrate on the core algorithm.

However, this technique of testing is not always appropriate. As with
most things in coding, it’s a trade-off. The counter-argument against
testing for “not true” is three-fold:

m Testing for the negative is sometimes counterintuitive.
] Multiple returns complicate an algorithm.

] Because you do not have indentation in the code syntax to help
you, you must remember what tests have passed as you read down
the function.

Avoid long “if” tests. Also, sometimes “if” test reversals
make the code easier to understand.

Repeated “if” expressions

There is a class of “if” tests that are particularly damaging to reasoning
about the code. These are the tests whose expression has already been
tested. These tests make us keep rethinking a condition and make us
nervous as to why another check is needed. Can the condition have
changed from the first test?

An Object-Oriented Framework 227

Chapter 13: Coding OOP

In addition, there is a danger that the person reading the code does not
see all the repeated expressions and misses some when the expression
must be modified.

There are two solutions to this situation, assuming the repeated expres-
sion is in a single class or function. One solution is to encode the results
of the test into a bit data member and then use this data member instead
of the class. The other method is to rethink the algorithm. It is quite
possible that the algorithm needs to be “warmed over,” recrystallized, or
converted from push to pull.

Be extremely cautious about repeated “if” expressions in different
objects. This is almost always a design mistake, because the algorithm
is being spread out across several classes, making it difficult to change it.

The authors once worked on a piece of code designed to power down the
units of a chip that were not being used. However, once we changed the
code, the test hung at the end. It turned out that, by powering down the
logic block, the chip would not respond to a register read and would
hang. In retrospect, this behavior made sense.

The code that was doing the read was confirming that the module had
not raised any errors. This was fine, but the test for “module in use” was
repeated in another part of the system that the authors had missed.

In the end, this bad style of widely distributed, repeated “if” tests was
not all bad for this project. The incorrect “if” test showed that, if software
accessed a register of a powered-down module, the chip would hang. The
designers ended up adding a simple watchdog timer on the internal bus.

Retesting the same condition test is clumsy, complicated,
and error-prone.

“If” tests and factory functions

228

So “if” tests are dangerous. How do we make as few of them as possible?
One way of minimizing “if” tests is to encode the different algorithms
in a class hierarchy with a common base class, and use a single function
to build these inherited classes. This function, called a factory function,
is given information to help it decide what inherited class to create. The
factory function returns a base class pointer. The rest of the system would

“If” Tests—A Necessary Evil

not know the specifics of the actual class; for all the code knows, the
object is a base class.

This is a very powerful technique for code adaptability. If the factory
function is separated from the class hierarchy, it can be adapted to
different situations without the need to change the rest of the system,
because the rest of the system knows only about the base class.

This reduces the need for “if” tests, because the mechanism of virtual
functions is taking their place. Very OOP!

A factory function example

As an example, consider a task to test a Controller Area Network (CAN)
protocol implementation. The testbench consisted of a reference model
(verification IP), a hardware implementation (which had three ways to
drive CAN, DMA, FIFO, and register), and a hardware-assisted periph-
eral interface controller (PIC) implementation (another small micropro-
cessor on the same chip). Because the CAN protocol is a multinode
protocol, several nodes were created. A factory function was used to
return a generic can_node class, even though within the factory function
one of five possible inherited classes were built.

The traffic generator did not have any knowledge about the specific CAN
implementation connected to it. The generator would simply send random
traffic. The checker also did not know about the implementation of the
nodes. It would just make sure all the nodes were in the same state (after
each bit time) and report any differences.

Hereis the can_node base class that the generator and checker had access
to:

virtual class can node;//The generic base class
function new (string name, configuration c,
virtual pins wires);
//the interface to the chip

configuration = c;
port = wires;
name = name;
endfunction
task init ();
init ()
endtask

An Object-Oriented Framework 229

Chapter 13: Coding OOP

230

task start ();
start ();
endtask

task stop ();

stop_ ()7
endtask

task send message (message data m);
send message_ (m);
endtask
task message received (message data m);

message received (m);
endtask

function string name();
return name ;
endfunction

'PURE protected virtual task init ();

'PURE protected virtual task start ();

'PURE protected virtual task stop ();

'PURE protected virtual task send message
(message data m);

pure protected virtual task message received
(message _data m);

configuration configuration ;

virtual pins port ;

local string name_ ;

endclass

The base class is the foundation for all the inherited classes. In this
example, it will specify how to start and stop the node, as well as how
to get and send messages. The init (), start (), stop_ (),
send message_ (), and receive message () methods are pure virtual
methods, which means that the inherited classes must provide their
implementation. This makes sense, because in our example we have
several implementations. The base class would not know how to interact
with the chip.

The local section of the base class has only the name of the instance,
and there is no inherent reason that this should be hidden from the
inherited classes. Because the name is a constant, the inherited classes
cannot change it after construction. Note that one may want to append
_fifo, dma, pic,or vip to the name, but that should be done in the
constructor of the inherited classes.

“If” Tests—A Necessary Evil

Now that the base class is defined, the inherited classes, such as
can_fifo, can be defined. They are prototyped here, but the implemen-
tation is too specific to be explained in this handbook.

A factory function to build the CAN nodes was used. First, here are the
inherited classes, without their implementations:

class can_node dma extends can_node
class can node fifo extends can_node
class can node register extends can node
class can node pic extends can_node

class can node vip extends can_node

Now, an enum is defined that can be used to select which specific node
type to build:

typedef enum {dma, fifo, register, pic, vip} can_ type;

At this point, assuming that we randomize on what type of node we want
to build, a single function can be called to create the specified type of
node. This is shown below:

//The Factory Function -
// Returns 1 out of 5 possible implementations
function can node build can node (can_type the can type,
string name, configuration c,
virtual pins p);
case (the can type)
dma: can node dma n = new (name, c, p); return n;
fifo: can node fifo n = new (name, c, p); return n;
register: can node register ¢ = new (name,
c, p); return n;
pic: can node pic n = new (name, c, p); return n;
vip: can node vip n = new (name, c, p); return n;
default: truss_assert (0);
endcase

endfunction

Given the above factory function, the top layer of the CAN test just builds
the nodes and connects them to generators. Because the chip and the PIC
were being developed at the same time, we also had separate tests that
built only one of those types and a reference node. It was only the top
layer of the CAN test that had any knowledge of the specific types of

An Object-Oriented Framework 231

Chapter 13: Coding OOP

nodes that were being connected. This was later randomized to test
various combinations of nodes.

Using factory functions to build a specific inherited class is
an OOP technique to reduce “if” tests.

Coding Tricks

When we code we tend to use patterns that have helped us in the past.
This section presents a few such patterns. This section, as does the
following section on idioms, shows conventions that have helped coders
focus their thoughts and tighten their code.

Coding only what you need to know

232

This is perhaps the cardinal rule for creating good code. It’s based, of
course, on the same assumption that creates our profession of verification:

Code that is not verified will contain bugs.

Sure, by using this technique we write code that does not have all the
features that every situation needs—but a smaller system is easier to
reason about and thus adapt. Remember, if a coder needs to add code to
your class, it’s because they need it.

Another reason for coding only what is needed is because then the code
that exists is at least verified to some level. It’s frustrating to work on a
method, only to find out after hours of debugging that it was never used
and does not work.

If a feature is present in some code, it had better be working
code. Be cautious about implementing features you will not
use today.

Coding Tricks

Reservable resources

The majority of hardware has a bus to access configuration registers. As
the verification system we write consists of many threads, there is a
danger that two threads can start using the bus at the same time. The
hardware bus is considered a reservable resource, because code must
first request access to the resource. The trick is to make the reservation
as simple as possible for the code that uses the resource.

The simplest solution is to hide the reservation inside the implementation
of the class. This is appropriate in most cases. A simple mutual exclusion
(mutex) algorithm can be used for this purpose. A mutex only allows one
thread at a time into a section of code. The latter parts of this handbook
show examples of using a mutex in a register-access BFM.

Sometimes the hardware can process several requests at the same time.
This is probably an implementation detail when used in a full chip test,
but it is probably something you need to expose at the unit level test. In
this case there are two classes. One class exposes a key, such as an integer
tag or an instance in the interface. The other class uses this lower-level
class and hides the key from the rest of the system.

The concept of reservable resources can also exist solely in the verifica-
tion system itself. You might, for example, have a DMA descriptor queue
and need to allocate and release descriptors. Of course, the hardware
actually implements the queue, but the management of the queue is a
verification concept.

Reservable resources may be an implementation detail, and
thus use a mutex internally—or they may be an external
property, in which case a “key” must be used. This key can
be anything from an integer to an object, depending on how
safe the management must be.

An Object-Oriented Framework 233

Chapter 13: Coding OOP

The register: an int by any other name

Accessing a chip’s registers is an important part of a verification system.
Register access consists of three parts: the register’s address, data, and
fields. The authors suggest that none of these be classes. Why? Because
in production software (which has only memory access and interrupts),
the register address will be an integer, the register itself will most likely
be an integer, and the field names will probably be macros.

Consider register fields. It is often a good idea to assign register fields
by using a field name, rather than hard-coded integer offsets. This makes
the code clearer and allows fields to be relocated within the register with
little pain. In Part IV of this handbook, we show some simple
"field get () and 'field put () macros.

When considering how to write and read registers, the authors prefer to
use an indirect, but simple, technique. We use the Teal memory functions,
which take in an integer address and a bit array for the data. The actual
protocol used is then appropriately simple (and abstract) for the test
writer. We use the testbench to attach a protocol to a specific address
range.

As another example of the utility of this approach, a verification system
may have back- and front-door register reads, and choose which to use
based on a test parameter. Also, there may be multiple front-door imple-
mentations, such as through a processor bus, a PCI, or even a JTAG!
protocol. One of these techniques could be selected randomly.

Registers are your friend, but don’t use them as exercises in
OOP. Keep it simple.

Using data members carefully

234

When you start building a class, there is a tendency to make many data
members. It is common to see a number of calls that have no parameters,
but that use the data members in the class as a shorthand. This is fine
when those methods are called from outside of the class. However, for

L. Joint Test Action Group, IEEE 1149.1

Coding Tricks

a protected or local method that is called by a public method, consider
using the standard parameter passing instead of a data member.

Here is an example:

class a class;
local int value ;
local int weak data member ;
//called from outside the class, use data member
task methodl (int value); value = value; endtask
//called from outside the class, use data member
task method2 (); value += 1; endtask
task method3 ();

//Is this confusing?

weak data member = value + 3;
method4 () ;
method5 () ;
endtask
local task method4d ()
weak data member + = 10;
endtask
local method5 ()
value = weak data member ;
endtask
endclass

The reasoning is that a data member is a bit like global state and comes
into a method whether or not you want it to. As such, it makes the class
slightly more complicated. This is fine where it is necessary, but inap-
propriate if the data could have been simply passed in as a parameter.

The fancy term for all this is spatial locality. In our case this means that
the data are needed by multiple calls from outside the class.

A related fancy term is temporal locality. This refers to code that is in
different functions but is called sequentially, as follows:

begin
objectl.do method() ;

object2.do_another method() ;
end

An Object-Oriented Framework 235

Chapter 13: Coding OOP

In general, with spatial locality you want to use data
members. With temporal locality, you want to use
parameters to the calls.

Here is the example reworked to pass parameters (this example has
temporal locality, but not spatial locality):l

class a class;
local int value ;
//other methods as before...
//less confusing?

task method3 ();
method5 (method4 (value + 3));
endtask

local function int method4 (int temp);

return (temp + 10);
endfunction

task method5 (int temp);
value = temp;
endtask

endclass

Use data members sparingly. Make sure a data member is
needed because of spatial locality.

Coding Idioms

An idiom is a fancy word for a coding trick that can be expressed not
only as a concept, but also in a well-known code structure. This section
introduces some idioms that the authors have found to be useful for
building verification systems.

' Yes, this is from a real test system. The authors have changed the method
names to protect the original coder.

236

Coding Idioms

The singleton idiom

Sometimes a class is meant to be instantiated only once, and it has no
clear owners. The fancy term for this is global service, as was discussed
a bit in the chapter on OOP classes. Let’s look in detail at a common
implementation of this one-off instantiation, the singleton. A singleton
uses a single static method, called get (), to return a pointer to this single

instance.

Consider the following example:

class channel counter;
static function channel counter get ();
assert (channel counter != null);

return channel counter ;

endfunction

static task start ();
assert (channel counter == null);
channel counter = new ();

endtask

static task stop();
channel counter = null;
endtask
local static channel counter channel counter ;

endclass

Another common convention for singletons is just to have a global
function that returns a pointer to the global object. This global function
may be put into a package if it makes the idiom clearer.

Note that the creation of the internal implementation pointer is a different
matter. There are different ways to do this, from automatically creating
one on first use, to having a factory function, to having an static start ()
method. Which mechanism to use is a personal choice.

Singletons are a good way to implement a global service.

An Object-Oriented Framework 237

Chapter 13: Coding OOP

Public nonvirtual methods:
Virtual protected methods

238

When you are coding a class, there are often virtual functions. These
methods provide the implementation of either the whole interface of the
class, or perhaps just a few specific details. Your first instinct is to make
these virtual methods public, and this might be good. However, some-
times you need to do some basics things first, or perhaps afterwards.
How do you guarantee that the pre- or postcode is called?

The trick is to have a public nonvirtual method that just does the pre- or
postcode and then calls the same named method (with an identifier, such
as a trailing underscore) as a virtual protected method. This allows any
standard preamble or postamble code to be guaranteed to be executed.
Sometimes you might want to use this trick even if there is no special
code. It’s a useful technique to separate an interface method (those with

T3]

an underscore, or

) from an implementation method.

Here is a short code snippet:

class my thread;
task start ();

start (); thread count ++;
endtask
protected virtual void start ();

local uint32 thread count ;

endclass

In this case the public code interface is through the start () method.
The actual implementation is done through inherited classes by means
of the start () method. This allows a reader of a class to concentrate
on the public, “nonunderscored” methods. It also allows coders that need
to inherit from this class to concentrate on the protected, “underscored”
methods.

With this technique, the nonvirtual public method is firmly in control
and calls the virtual method only after performing any desired pre or post
actions. Sometimes, though, the very nature of the call expects pre- and
postconditions. In this case it is clumsy for the inherited class to have to
remember to call the base class method. If the designer of the base class
wants to encourage, or anticipates, such usage, it’s better to add virtual
pre and post methods explicitly.

Coding Idioms

Here’s a code snippet that can be used in this case:

virtual class generator;
task generate one ();
__generate one ();
//code here to do the standard generate one()
packet count++;
generate one ();
endtask
'PURE protected virtual void _ generate one();
'PURE protected virtual void generate one ();
local uint32 packet count;

endclass

In this case the “main” method—generate one ()—is not virtual, but
the pre and post methods are. One convention the authors have used is
to write pre_ and post_ as prefixes to identify the set of methods.
However, the convention that the authors prefer is to name the pre method
the same as the main method, but with a double underscore (“__")
prepended. The post method is similar, but with a double underscore

k) Lt}

appended. In this convention, the reason the letters “pre_" and “post_
are not used is that they can interfere with the semantics of the name of
the original method (which might be something like post_process, or
post_completions, or prefetch data). Asis acommon theme in this

handbook, the choice is yoursl.

To enforce the calling of special pre or post code, use
combinations of public nonvirtual methods and protected
virtual methods.

1-()fcourse, pre randomize () and post randomize () are
reserved methods in SystemVerilog.

An Object-Oriented Framework 239

Chapter 13: Coding OOP

Enumeration for Data, Integer for Code Interface

240

Enumerations (enums) were introduced in programming languages to
make the code clearer. They are more powerful than defines.

Using enums when setting up parameters can increase the communication
level, but there are a few dangers. One occurs when the enum is “case”d,
or “if” tested. This is can lead to unexpected behavior when enumerations
are added. Enums should generally be used as a shorthand for integral

values.

To this end, the method that uses the enum should sometimes take in an
integer as the formal parameter. Why? Because this allows for future
expansion (enums cannot be subclassed) as the integral value of the enum
becomes the important part of the method’s implementation.

For example, consider a baud rate enumeration:

package uart configuration;
typedef enum {b 9600 = 9600, b 19200 = 19200,
b 921600 = 921600} baud rate;
endpackage
class uart;
extern task new baud rate (uint32 new value);
local uint32 baud rate ;

endclass

Again, this is one of those things that you were probably not taught in
class. You would have been told to define an enum and use it in all
parameter declarations. That technique does work a fair amount of the
time, particularly if the range of the enums is fixed for all time. However,
in the messy world of coding for a living, sometimes we need to be a
little more flexible.

Sometimes you should define an enumin a package, but take
inan int for the methods that would have used the enum.
Note that mixing enumerations and integers is not always
desirable, as it weakens the abstraction. The idea is to use
this technique only when future derivations need it.

What’s in a Name?

What’s in a Name?

For some reason, class names in OOP tend to be more important than
structure names in C or modules in Verilog. Maybe this is because in
OOP coding, we can enforce what operations are allowed in a class, so
we tend to pay more attention to their names. At any rate, this section
provides guidance on how to make the transitions between file, class,
and instance when finding your way around a verification system. As we
have said many times in this handbook, it’s up to you and your team to
decide what conventions to use.

Keeping class name the same as file name

A common convention is to have the class name be the same as the name
of the header file that declares the class. For example, it is much easier
to find a class or definition by using the Unix £ind command directly,
rather than piping it to grep.!

A corollary convention is to have only one class declaration per file.
However, there are a few exceptions to this guideline. One is when there
are small utility objects that are used only right where the main class is
used. Another exception is when you are writing VIPs and it is simpler
for a user to understand the interface as a monolithic entity. Note that in
some cases, the monolithic header file may just contain an 'include of
other header files.

Consider having a one-to-one relationship between class and
file. Exceptions are where there are tiny helper classes and
when a group of classes is more important than the individual
classes.

Keeping class and instance names related

While you can use any identifier for a typename and a variable, strive to
keep names as similar as possible. This seems like an obvious guideline,

I What could be easier than this? find <path> -name "*.sv" -exec
egrep -1 -i "your search text" {} \;

An Object-Oriented Framework 241

Chapter 13: Coding OOP

Coding with

242

but we programmers are a lazy bunch. It is simple to miss changing an
instance name when a class or enum is changed. It takes work and typing
to keep names simple. (Appreciate that we essentially type for a living.)

Consequently, when an instance of a class is created, try to name the
instance the same as the class. Sometimes, if there are several instances
of a class in the same scope, a “ <n>”, where n is an alphanumeric
variable, can be appended to the name. The reason is that this provides
a good mental link to back to the class definition, which specifies what
can be done with this instance. A counter-example is when a class
provides some generic behavior that can be used in many contexts. For
example, a register class may provide generic reads and writes, as well
as take in an address in the constructor. In this case it is the mnemonic
of the address that is the best name for the instance.

Here is another counter-example, from a project the authors worked on:

ht vip ht drv; //hard to remember that ht drv is a ht vip
//Is pex known in the project? Is mon better than monitor?

pex mon a_ pex mon;

Note that SystemVerilog allows identifiers and typenames to have the
same string, as in my _class my_class, but the identifier shadows the
class in some contexts and can be confusing.

Instance names should be readily traceable to their class
name.

Style

Coding conventions can quickly become a “religious war,” something
that is not productive for a project, team, or individual. As a remedy, this
section presents some style conventions that have proved to be useful.
However, as with all the other sections in this handbook, the recommen-
dations made are not intended to be a set of rules.

Adhering to a single style may improve clarity, but only if the entire
system is coded by a single person (think “My style is the best!”) But
even in this case, one’s style often evolves over time and adapts to the

Coding with Style

style of ateam. In the general case, the industry definition of “good style”
evolves as well.

Because of the evolution of what makes “good style,”
differences in style are essential for the learning process.

Proceeding with caution

In general, coding conventions slow down good coders, and do not
necessarily increase the readability of the code created by poor coders.!
Understandable code is understandable code, independent of the conven-
tions used. The goal of a coding convention should be to increase
communication among the team members.

For teams that feel the need for a “team style,” a “guidebook™ is usually
a better idea than a required coding style. This guidebook should include
guidelines, withreasoning following each guideline. In addition, counter-
arguments where the guideline may not be appropriate should also be
provided. If the entire team does not agree on some guidelines, it is a
good idea to include both the pro and the con arguments, so that locally
appropriate decisions can be made—including allowing each team mem-
ber to decide. The presence of the counter-argument also provides a
framework should some assumptions change.

The goal of a coding convention should be to increase
communication among the team members, not slow down
the fast coders.

General syntax conventions

One guideline is to use all lowercase identifiers, with underscores and
separators. Identifiers are all the nonreserved words of the language:
your variables, class names, methods, data, and enums. The reasoning
behind this convention is that there is less time spent thinking about how
to type an identifier. An exception to this guideline would be if the team
wants to capitalize three-letter acronyms (TLAs) and macros.

LowAll generalizations are false, including this one.” — Mark Twain

An Object-Oriented Framework 243

Chapter 13: Coding OOP

A counter-argument to this approach is that it can create long names.

An alternative convention uses capitalization to indicate an identifier’s
scope, or class. For example, method names could begin with a capital
letter, while data members begin with a lower-case letter. The reasoning
behind this guideline is to encode the type information in the case of the
identifiers.

Consistent naming conventions can be useful, but beware of
dogma.’

Identifying local and protected members

244

Another convention used is to identify protected and local members (data
and methods) by using a trailing underscore. This allows one to know
quickly whether the method is “internal.” It also allows one to look at
an algorithm in a method and separate the “internal state” from the
method’s parameters.

The counter argument is that a method name may become public as the
project evolves. Because SystemVerilog uses access rules first, and then
scope rules, you can have an issue with code that compiles one day and
later does not compile should a method change its access. This issue can
also be present if the name had to be changed. Consequently, changing
the name may also cause compile errors.

Identifying local and protected members helps others learn
about a class.

1. “A fanatic is one who can't change his mind and won't change the subject.”
(Sir Winston Churchill)

Summary

Summary

In this chapter we looked at some of the techniques used to create our
code “art.” We talked about being careful with “if” tests; they are a
necessary evil that can complicate the code. We introduced the concept
of the factory function, useful in building inherited classes.

We offered the advice that you should code only what you need to know.
We then introduced a variety of useful coding tricks and techniques that
experienced coders use to solve programming problems, including, but
not limited to, the following:

] Using reservable resources and mutex

m Using register fields instead of hard-coded integers
m Using data members (always carefully!)

m Using idioms to provide structure

] Using singletons for global services

] Using virtual protected methods, to separate code interface from
implementation

] Using naming and coding conventions to express intent and
understandability

We also presented reasons for considering additional techniques, such
as the following:

m When to use enums or integers, and when you should mix them

m Why coherent class naming is a good thing, and why the names of
classes, files, and instances should be related

m Why consistent style and syntax are a good thing—if they are
applied with intelligence

So, this chapter covered a large number of techniques. Remember, you
don't have to use all of these tricks all of the time, but they are here for
reference when you need them.

An Object-Oriented Framework 245

Chapter 13: Coding OOP

For Further Reading

For a list of resources applicable to this chapter, just revisit the For
Further Reading section of the Why SystemVerilog? chapter.

246

Part IV:
Examples
(Putting It All
Together)

This is what the rest of the book has built up to. Everything discussed
earlier in this handbook is applied here to examples that better resemble
the real world. This is still a book, so examples need to be relatively
simple or they would be incomprehensible, but our goal with these
examples is to show what real hardware verification with SystemVerilog
looks like.

The examples here build on everything discussed so far. They use the
Truss verification methodology, and the Teal classes and functions. They
apply the OOP techniques discussed throughout the code.

The examples were not specifically chosen or coded to highlight the
strengths of Truss, Teal, or even SystemVerilog. Rather, they were coded
to resemble real-life projects as much as possible. Our goal is to show
realistic examples and creative solutions. We hope you can pick up an
idea or two by reading this. (The code freely available at
www.trusster.com also provides a few open-source VIPs that can come
in handy.)

Hardware Verification with SystemVerilog: An Object-Oriented Framework 247

Block-Level Testing

C H AP T ER 1 4

| can give you a six-word formula for success:
Think things through—then follow through.
Sir Walter Scott

In many endeavors, follow-through is everything. From sports to parent-
ing, it’s not only what you say but what you do that is important. This
chapter is the first of the “follow-through” chapters.

We use all the tools, tips, and techniques from the rest of the handbook
and apply them to something resembling a real-world example. This is
the first complete example of what a test system using SystemVerilog

might look like.

We look at a block-level verification environment. Later, we’ll adapt this
same environment to be used at the full-chip level.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 249

Chapter 14: Block-Level Testing

Overview

250

This chapter covers a block-level verification effort as part of a large
project. The goalis to verify a UART 16550 RTL block, written in Verilog.
To do this, we will build an environment that will not only verify the
block but also provide adaptable verification components for later project
stages.

The example presented here will show all verification components needed
to do UART 16550 verification as well as a fully randomized test. Several
points of interest in the code will be highlighted throughout the chapter.
(We present code in a slightly different form from the source code.!
Sometimes we merge the interface and implementation of a class together,
although they are separated in the source code. Also, we may abbreviate
a class interface or some method’s code to get straight to the point.)

This chapter differs from the Truss tutorial chapter (in Part II) in that it
focuses more on the middle layers of a verification system instead of on
the flow. The middle layers are where managing the complexity of a
verification system comes mostly into play.

If you want to look closer at execution order, it’s recommended that you
start by referring to the Truss standard test algorithm known as the
“dance” in the Truss Basics chapter. Then, with the “dance” as a refer-
ence, divide and conquer by using an ends-in approach. In other words,
take a closer look at both the top-level block test.sv (and its related
test components) and the protocol aggregrator, testbench.sv. This
will help show the overall structure and flow of the environment.

This chapter will talk about a few things. First, we set up the example
with a theory of operation. That section highlights the overall environ-
ment and the protocols that are used.

Then we look at several points of interest in the code. These points cover
code complexity problems of the middle layers in a verification system.
We present these middle-layer techniques in their order of execution, by
first looking at power-on reset, then at configuration and traffic genera-
tion, and then at checking.

I Available at www.trusster.com.

Theory of Operation

Finally, we show how all the pieces are connected together through the
testbench.svand block test.sv. This includes details on how chan-
nels, configuration objects, and interface layers are instantiated.

Theory of Operation

Many systems have at least one UART connection. This may be for
diagnostics, software debugging, or general communication. For this
reason, a single UART serves as a good first block-level example.

Here are the main components involved in the simulation: !

The UART Verilog core? was not developed by the authors. Many imple-
mentations of UART cores are available, and it was important to the
authors that a known-to-be working UART model be used. For this
example we chose an open-source design IP of a UART 16550 from
OPENCORES.?

This core follows the common register set of the 16550 UART, a popular
UART implementation by National Semiconductor. It is so common, in
fact, that software drivers for the UART 16550 are included with many
Linux distributions. As with all design IP, this core has its own quirks
that must be handled. We’ll talk about this in the configuration section
below.

The UART 16550 core used has two interfaces. One is the actual UART
transmit and receive lines, and the other is a local bus to read and write
registers in the UART block. In this case the local bus is a wishbone
interface, a standardized local bus for many OPENCORES models. The
wishbone interface will be described in more detail in a later section.

I Unlike previous illustrations, this one shows the least abstract (most concrete)
layers at the top, because now we focus on the concrete layers.

2- A core is an HDL module that provides a well-bounded functionality. In our
case this is the UART16550 registers and UART wire protocol.

3. See www.opencores.org.

An Object-Oriented Framework 251

Chapter 14: Block-Level Testing

UART Example: Objects and Connections

testbench.v
‘ wishbone_driver ‘—» 4 uart_bfm
16550
UART
teal_memory_write() Verilog
wishbone
driver
‘ uart_uart_16550_sfm ‘)
T connection
| uart_uart_16550_sfm_agent | | uart_bfm_agent |
| uart_generator_agent | | uart_checker_agent |
agent
uart_generator uart_checker
‘ 99 ‘ transaction :

‘ uart_basic_test_component ‘

\ uart_test_0 |

Verification environment

The verification environment uses a UART BFM model to monitor the
actual data transmitted and a wishbone driver model to read and write
UART registers. For both interfaces, verification IP models, generators,
BFMs, configuration objects, and checkers will be designed.

Looking at the Verilog side, the testbench environment is fairly straight-
forward. It is shown on the following page.1

The UART module under test is called uart_top. It’s instantiated in the
testbench.v file, which also instantiates the wishbone Verilog driver
and reference clocks. The rest is driven by the testbench. The wishbone
driver has a reset wire (not shown), which is used to reset the chip. These
are the main components of the system.

1 Here we can actually use the term “wires.”

252

Theory of Operation

UART Example: HDL Connections

uart_testbench

-~

1
1

clock
reset_n

v
address 32 testbench.v
. data 32
(5] .
'_g select 2 _c_t_?_g
| o S ™> ug
2 >0 '
S T § | uart_top RX | 4!
5 op_code 2 :é% g
2 do_work 1 o
4
work_done

Verification IP

For this example, a Verification IP (VIP) will be adapted or developed
for the core’s interfaces. VIPs are used to highlight how adaptable
verification components can be developed and moved from one project
to another. There is always work required when adapting an existing
component to a new environment, but if the component is structured
appropriately, the work can be minimal.

UART VIPs

For the UART 16550 verification system, the authors developed a generic
UART BFM. We also developed what the authors call a software func-
tional model (SFM). An SFM is a model of some protocol or common
implementation that uses register access instead of wires for the chip
connection. An example of this is the USB Open Host Controller Interface
(OHCI). The specification for a protocol defines what registers must
exist and their meaning. It is similar to a BFM, except that instead of
connecting to a bus, we are connecting to registers.

An Object-Oriented Framework 253

Chapter 14: Block-Level Testing

254

The generic UART BFM is specifically designed to be separate from the
specifics of the 16550 protocol, so that the UART BFM can be used for
any UART implementation.

The UART 16550 SFM, in turn, deals with all the registers for the 16550
protocol. This SFM acts like a software driver, in that the SFM programs
the UART core’s registers.

The UART 16550 SFM actually uses the wishbone BFM to set the
registers of the Verilog core.

Wishbone VIP

The wishbone protocol is the bus used to read and write the registers of
the UART core. For the verification system, a wishbone BFM is used to
do this.

Instead of developing a new wishbone BFM from scratch, the authors
decided to reuse a Verilog verification model provided with the UART
16550 core. This verification model included Verilog tasks for reading
and writing registers over the wishbone interface.

These read and write tasks are wrapped into a BFM. When a Verilog task
is to be called (because of a higher-layer testbench call), the testbench
side sets the appropriate wires and raises do_work. The Verilog side, in
an always block, then calls the appropriate Verilog task or tasks, and
when they return, raises the work_done. This signals the testbench side
that the results from the Verilog driver are available.

Reusing existing verification models like this highlights how known-to
be-working models can be integrated with a new verification environ-
ment. This technique is talked about more in the section on reading and
writing registers.

Running the UART Example

The verification dance

The dance is the flow of events (or method calls) during simulation. It,
of course, follows the “dance” talked about in the Truss Flow chapter.
First, the chip is brought out of reset, then a configuration is chosen by
means of randomization, and the UART core is configured (by means of
register reads and writes). After this, a generator is asked to generate a
group of data words for transmission. Because the UART protocol is
bidirectional, both the ingress and egress sides have a generator and
checker. After the data have been transmitted, the test waits for the
checker to indicate that it received all the traffic. Then the test exits and
a final status is printed.

Running the UART Example

Running the example is the same as for all tests that use Truss. However,
before you run it, you’ll need to set up some environment variables.

In the directory /examples/single uart/bin, there is a setup script.
Before you execute the script, make sure you have defined BOOK HOME.
Then source the setup script, and it will set TRUSS HOME and
PROJECT_ HOME according to the BOOK HOME variable.

Before you run the truss script, you must define the SIMULATOR HOME
environment variable. In addition, you must define S1M, for the simulator
name and path to the install directory you are using. Type truss -help
to see the currently supported list of simulators.

To run the example, type the following:
$TRUSS HOME/bin/truss --test block uart

There are many other options to truss, but this command will compile
all the code and run the test. You should see a bunch of compiles and
then the test will run.

An Object-Oriented Framework 255

Chapter 14: Block-Level Testing

Points of Interest

There are many points of interest in this first real example. There is a
UART configuration object, used to pick the various settings for the
protocol. There is a code interface, implemented as a Teal front-door
memory bank. There are agent objects, used to connect the UART BFM
and SFM to the generators and checkers.

So why are these objects important? In your verification system, you
probably will have the equivalent objects for each of these points of
interest. Understanding the machinery of their construction and connec-
tion—and the trade-offs you may have to make—will help you in building
your system.

Configuration

256

Most chip protocols have a number of registers to support configuration
settings. These registers control the exact behavior of the protocol; in
other words, they describe what mode it is in. This might determine how
the protocol responds to interrupts or whether it uses even or odd parity.
With any real chip verification, there is a need to randomize this setup
so that each configuration setting is tested.

By creating a configuration class for each protocol, you create a central-
ized place that controls the randomization of each instance. This config-
urations class is independent of the protocol registers, containing
protocol-generic features that are then mapped to registers by a specific
implementation.

Why do this? For two reasons. First, you will most likely have a generic
side to the protocol, which will operate outside of the chip. This code
will not have configuration registers (because it is not hardware), and it
can execute the more-generic protocol configuration directly. Second,
using a protocol-defined, but generic, class is a way to make the config-
uration adaptable to other implementations. Moving to a different core
or even to a different chip using this same protocol should not radically
change the configuration class.

Configuration

The configuration class is responsible for keeping track of all parameters
of an interface, as well as for randomizing them into a “legal” configu-
ration setting.

In our UART 16550 example there are two configuration classes: a
generic class for the UART BFM, and a specialized UART 16550 class
for the specific UART protocol we are testing. The specialized one
inherits from the generic one.

Several techniques are used in the configuration objects to create adapt-
able code. These, or similar, techniques might be good to consider when
you have to write code to verify a protocol. Here we will look closer at
the different configuration classes, and highlight interesting areas.

VIP UART package

The VIP provides a generic package that contains the enumerations and
associated defines for the configuration UART. This technique of using
a package for enums solves the issue that enums are generally in global
scope.

package uart;
typedef enum {none=0, even, odd, mark, space} parity
//other parameter defines
parameter int max uart width = 32;
typedef bit [max uart width:0] data type;
typedef enum {
b 150 = 150, b 300 = 300, b 1200 = 1200,
b 2400 = 2400, b 4800 = 4800, b 9600 = 9600,
b 19200 = 19200, b 38400 = 38400,
b 57600 = 57600, b 115200 = 115200,
b 230400 = 230400, b 921600 = 921600
} baud rate;

endpackage;

The reason each legal parameter is defined as an enum is to help show
intent. This is important when writing adaptable code, and the idea with
this UART model is that it should be able to be reasoned about and be
adaptable to many different situations.

An Object-Oriented Framework 257

Chapter 14: Block-Level Testing

VIP UART configuration class

258

The VIP provides a generic UART class that contains the largest legal
configuration space. This is because it has been built to be valid for any
UART core. The UART 16550 configuration object, by contrast, inherits
from this code interface, but actually limits the number of possibilities
to what our core can support.

The UART configuration class is described below. It contains an enum
definition for each parameter that describes the valid protocol domain,
as well as a variable for each parameter.

The class also contains do_randomize () and sreport () methods to set
up and print the status of the current setting.

Here are the interesting parts of the class definition:

class uart configuration:
extern function new (string name);
uart::parity parity ;
baud rate baud rate ;
uart::stop bits stop bits ;

//other parameter instances
extern virtual task do randomize();
extern virtual function string sreport();

endclass

The do_randomize () method is responsible for setting each parameter
to a legal value so that it can later be written to hardware or interpreted
by a generic protocol VIP. Because each parameter is an enum, some care
must be taken for randomization. Let’s look at this.

Randomization of parameters

Randomization is somewhat like logging: it appears simple and obvious,
but becomes very complex when a large system is verified. One of the
primary decisions is whether to “hook into” the randomization provided
natively in SystemVerilog. As you see in the code, we sometimes use
Teal’s randomization, and sometimes SystemVerilog’s. We just want to
show what both techniques look like.

In addition to deciding which randomization to use, you have to decide
whether a method call—either SystemVerilog’s randomize () or Truss’s

Configuration

do_randomize () —should be present in the code interface. Sometimes
the fact that there are randomized parameters is just an implementation
detail. Other times, however, it is up to the caller to randomize the
instance.

In this example, we show how to keep randomization as an implementa-
tion detail and use ranges to constrain the randomization. (The next
chapter shows an example of how to bring randomization to the interface.)

A utility class, uart configuration chooser, is used to do the
actual randomization. The dictionary is used to get the min/max bounds

and this information is used in the SystemVerilog constraints. The code

to choose the parity is shown here:!

class _ uart configuration chooser;
rand parity parity ;
local parity min parity;
local parity max parity;
constraint valid parity {
parity >=min parity; parity <=max parity;}
/..
function new (string n);
log_ = new (n);
min parity = parity' (teal::dictionary find integer
({n, " min parity"}, 0));
/...
endfunction

endclass

As can be seen, each time the helper class does the actual randomization.
This class is used by the do_randomize () method, like this:

task uart::configuration::do randomize () ;

~_uart configuration chooser chooser =
new (log .name ());

'truss_assert (chooser.randomize ());
parity = chooser.parity ;
/..

endtask

1'FormecompRWConseeuart_configuration.sv

An Object-Oriented Framework 259

Chapter 14: Block-Level Testing

This code shows how the parity is randomly picked by the
do_randomize () method. This technique of defining a random data
member in the utility class and then setting its constraints by means of
the dictionary is repeated for each parameter. Thus, at the end of the
method, all parameters are set to a random legal value.

UART 16550 configuration class

In this project a UART 16550 core IP is used. The UART 16550 is a
common protocol, but our core puts a few restrictions on the legal UART
register values. As shown below, we created a valid UART 16550 con-
figuration by expanding upon the generic UART configuration class:

class uart configuration 16550 extends uart configuration;
function new (string name) ;
super.new (name);
endfunction
virtual task do randomize ();

//correct cases that our core cannot handle

super.do_randomize ();
if ((stop bits == configuration::two) &&
(data_size == 5)) begin
stop bits = configuration::one and one half;
log_ .debug (

"Corrected stop bits from 2 down to 1.5
data size is 5).");
end
if ((stop bits ==configuration::one and one half)
&& (data size >= 6)) begin
stop bits = configuration::two;
log .debug ("Move stop bits from 1.5
up to 2 (data size is 6, 7, or 8).");
end
endtask

endclass

The configuration 16550 class inherits from the VIP configuration
class. It overrides the do randomize () method of the base configu-
rationclass. As shown in the implementation of the overloaded method,
configuration 16550 calls the base class method [see the

260

Configuring the Chip

super.do_randomize () line above] and then checks the actual values
of a couple of registers.

If, for our core, illegal register combinations have been randomly chosen
by the base class, do_randomize () corrects it. This is done to ensure
that a legal UART 16550 configuration is picked.

Configuring the Chip

So how does an the actual chip get configured once a configuration object
has been created and randomized for an interface? The configuration
object represents the information a software driver would have to know
to set the correct registers in an actual chip.

In the Truss solution we follow this concept in the driver or BFM. A
configuration object is known by all the particular drivers, BFMs, and
monitors on a protocol. This knowledge is necessary for the connection-
layer objects to be able to drive and monitor the physical connections.

But how does the configuration get programmed to the actual chip? This
is not normally done over the same protocol. Rather, programming the
chip is normally done over one or a couple of major protocols. For
example, if a chip has an embedded processor, programming is mainly
accomplished through the processor’s external address and data wires.
If the chip does not have a processor, this is accomplished through some
standard, well-defined protocol, such as USB or 12C.

In our chip the wishbone protocol is used to program the registers in the
chip during the write-to-hardware phase of the “dance.” The
write to hardware () method of the uart 16550 bfm class doesn’t
access the hardware directly through its own wires. That would both
complicate the code and made it harder to adapt. Instead, it uses the
register defines on top of Teal’s memory routines. The wishbone driver
is hooked underneath these memory routines. Let’s look at the technique
of using Teal’s memory access.

An Object-Oriented Framework 261

Chapter 14: Block-Level Testing

Register access

In order to be clear and to create adaptable code, we have the method
uart 16550 bfm::write to_hardware () use register writes.

Here is the method:

task uart 16550 bfm::write to hardware();
teal::uint8 data;
data = 0;
/]
'truss_assert (configuration .data size >= 5);
'truss_assert (configuration .data size <= 8);
'field put(data, data size,

configuration .data size - 5);

'field put(data, access clock divide, 1);
teal::write (UART REG LC, data, 8);
teal::uint8 lc save = data;
data = divisor;
teal::write (UART REG DL1, data);
data = divisor >> 8;
teal::write (UART REG DL2, data);
'field put(lc_save, access clock divide, 0);
truss::write (UART REG LC, lc_ save);

endtask

Notice that the code is using both teal::write() and 'field put.
What are these? The write () function uses Teal’s memory manager to
abstract away how the register will be written. The ‘field put is a
local macro that may be useful. It is defined as follows:

'define field put (data,field,value) \
data['field" max:'field" min] = value
'define field get (data, field)\

data['field" max:'field" min]

Why all this define trickery? The point is to abstract how the actual
registers and fields are accessed and manipulated. The authors are aware
of, and have created, several fancier ways of accessing registers for
verification. However, we believe that this mechanism has the appropriate
level of simplicity and opens the door for the software team to understand
the verification code.

262

Configuring the Chip

Notice that the register addresses are defines. This is appropriate,
although they could have been parameter const int should the team
decide that is more appropriate.

The field names are also defines, but they are named a specific way. This
is because the 'field put () assumes a min and a max suffix to the
field names. This was done to minimize the parameters into the macro.

For example, the following is used for the data size field:

'define data size min 0

'define data size max 1

Recall that the implementation of teal::write will find a memory
bank mapped to that address and use it for the actual access.

Next we will look at how an actual address resolved to the wishbone
interface.

The wishbone_memory_bank and
wishbone_driver

Now we have seen how the UART 16550 SFM writes registers. But how
does this get translated into accesses to the wishbone driver? Remember
that Teal’s memory routines use a look-up table to figure out which
memory bank object should handle the memory access.

We’ll just add a wishbone memory bank:

typedef class wishbone driver;
class wishbone memory bank extends teal::memory bank;
extern function new (string n,
wishbone driver driver);
extern virtual task from memory(teal::uint64 address,
output bit [MAX DATA - 1:0] value, input int size);
virtual task to memory (teal::uint64 a,
bit [MAX DATA - 1:0] value, input int size);
wishbone driver .to memory (address, value, size);
endtask

endclass

An Object-Oriented Framework 263

Chapter 14: Block-Level Testing

The real work is done in the wishbone driver, although that, too, just
calls down to a module in the Verilog. Here is how the write method of
the driver works:

task wishbone driver::to memory (
bit [63:0] address,

input bit [MAX DATA - 1:0] wvalue, teal::uint32
size);
mutex .get (1);
wishbone driver interface .op code <= 0;
wishbone driver interface .address <= address;
'truss_assert (size <= 8) ;
//put the data on the right line
case (a % 4)
0: begin wishbone driver interface .select <= 1;
wishbone driver interface .data <= d; end
1: begin wishbone driver interface .select <= 2;
wishbone driver interface .data <= d << 8; end
2: begin wishbone driver interface .select <= 4;
wishbone driver_ interface_ .data <= d << 16; end
3: begin wishbone driver interface .select <= 8;
wishbone driver interface .data <= d << 24; end
endcase
wishbone driver interface .do work <= 1;
@ (posedge (wishbone driver interface .work done));
wishbone driver interface .do work <= 0;
mutex .put (1);;
endtask

By setting do_work_to 1, we notify the Verilog of a pending transaction.
By waiting for work done to be 1, we cause the code to wait until the
Verilog half of the driver signals that the transaction completed.

The Verilog code is not really interesting, as it, in turn, just calls tasks
in a module called wb_mast. This module is part of the OPENCORES
code. All these files are in the directory /verification/vip/wishbone.

This technique of adapting existing Verilog tasksis a good way to leverage
working, debugged Verilog code. There is no need to throw the code
away, nor any need to rewrite it.

264

Traffic Generation

Traffic Generation

Now that we have the chip all configured, we need to send traffic through
it. The UART VIP code contained a basic generator, whose interface is

shown below:

virtual class uart basic generator;
extern function new (string n,
uart configuration c);
//send one block of words to the uart bfm,
//hold off sending the block by delay
extern task send block (teal::uint32 words,
teal::uint32 bit delay);
'PURE protected virtual task send block
(uart _block b);

endclass

The send_block () method creates a block of data, with a specific block
delay and then calls the connection virtual method send block (). The
data word size is fixed, because the configuration has been randomized

previously.

The send block () is a pure virtual method and is used as the agent
connection to the BFM or SFM. The agents are discussed next.

The generator_agent and uart_bfm_agent classes

Now that the generator is generating traffic, we have to connect it to the
BFM or SFM. There are as many ways to do this are there are stars in
the sky. The authors have chosen to have the connection agents use

channels.

'include "uart channel.svh"
class uart generator agent extends uart generator;
extern function new (string n, uart configuration c,
uart channel t);
protected virtual task send block (uart block b);
out .put (b);
endtask
local uart channel out ;

endclass

An Object-Oriented Framework 265

Chapter 14: Block-Level Testing

266

This class does not contain much code. Remember, the purpose of this
class within the Truss framework is to enable a connection-policy deci-
sion, so the code size is secondary. That said, smaller is better, and this
example relies on the channel to do most of the work. It simply puts into
a channel the data to be sent.

Let’s take a look at the other half, the connection to the BFM or SFM.
We’ll only show the BFM as the SFM is strikingly similar. Of course,
these agents should use a channel as well, because the testbench connects
instances of these two classes together.

This class is shown below:

'include "uart channel.svh"
class uart bfm agent extends uart bfm;
extern function new (string name,
virtual uart interface ui,
uart configuration c,
uart channel to be transmitted,
uart channel received from wire,
teal::uint64 clock frequency);
virtual task receive completed (uart word w);
uart block current rx = new (0);
current rx.add word (current rx word);
received from wire .put (current rx);
endtask
local task do tx thread ();
forever begin
block current tx;
to be transmitted .get (current tx);
if (current tx.block delay) begin
pause (one bit * current tx.block delay);
end
end
for (int 1 = 0; (i <= current tx.max offset ());
++1i) begin
send word (current tx.words [i]);
end
endtask

endclass

The Checker

There are a few point of interest in the preceding code. Because UART
is a bidirectional protocol, there are two channels. One channel is used
to connect to the checker agent, and the other channel is used to connect
to the generator agent.

Another effect of the UART being a bidirectional protocol is that there
are two methods, one to support each channel. One method is the con-
nection technique of overriding a pure virtual method, in this case,

receive completed ().

The other channel-supporting method is do_tx thread(). As you can
probably guess, this method runs in a separate thread of execution. This
method first delays the appropriate amount. It then takes the block of
data words and sends them, one at a time, to the UART BFM.

There is one more point to make before we move on. A chip might have
several ways to drive an interface, such as register, FIFO, or DMA. One
would probably write corresponding SFMs and SFM agents.

In general, the agents implement a connection policy by overriding the
pure virtual method in the base class. In this example, we used a channel
policy.

The Checker

Now that we have the transmit side connected, let’s take a look at the
checking side. We have already done half the work. The agents will place
any received data into a channel. We just need to create the checker agent
to connect the channel to the checker, as follows:

'include "uart channel.svh"
class checker agent extends checker;
extern function new (string name,
uart channel expected, uart channel actual);
protected virtual task get expected
(output uart block b);
expected .get (b);
endtask
protected virtual task get actual
(output uart block b);

An Object-Oriented Framework 267

Chapter 14: Block-Level Testing

actual .get (b);

endtask

protected virtual task more (output bit value);
value=expected .size ();

endtask

local uart channel expected ;
local uart channel actual ;

endclass

The checker agent is providing the connection policy for the checker. As
we have used a channel for the connection, channels are used here. The
expected channel comes from the generator (through a tee, or tap,
described in the next section), and the actual channel is the received
channel in the BFM.

Detailed BFM Agent Connections

To UART SFM
and chip

From chip and
UART BFM

Channel uart::bfm_agent

Expected Actual
y A 4

uart::checker

The checker agent provides the checker with three things: the
expected, the actual, and whether or not there is more checking to do.

Checking the data

268

Let’s take a look at the checker. It’s a little complex because the checker
must handle the fact that the expected and actual block sizes may be
different. This is normal in a real system, for several reasons. One is that
a DMA- or FIFO-based receive will “clump up” the received data,
depending on how the chip was set up (the specific FIFO interrupt trigger
points, DMA block sizes, and so on). Another reason is because a
transmission may have to be broken up into segments by the protocol.

The Checker

Here is the key algorithm in the checker. In the text below, we have
removed most of the received data code (because it is identical to the
expected code). Also, the code has been simplified just a little, but the
essence is still the same. (The actual code is available at
www.trusster.com.)

task uart checker::perform checking ();
uart block current tx block = new (0);
uart block current rx block = new (0);
int current tx = 0;
int current rx = 0;
forever begin
if (current tx == current tx block.size ()) begin

get expected (current tx block);

current tx = 0;
end
if (!current tx.equal (current rx)) begin
//... Long error print here!
end
/7. ..

++current tx;
begin
bit more; more (more);
if ((current tx == current tx block.words .size ())
&& (!more))
done .signal ();
end
endtask

The algorithm compares the data words and relies on dynamic array
indexing to move through the block of words. When the array size () is
reached, a new block of data is pulled from the agent. The algorithm also
uses the uart word::equal() to decide how to compare the block
elements.

If the agent indicates that there are no more blocks, we signal an event.
This event is used by the wait for completion() code, in a stunning
display of software engineering:

task uart checker::wait for completion ();

done .pause ();
endtask

An Object-Oriented Framework 269

Chapter 14: Block-Level Testing

The test, by way of the test component, is waiting for this checker’s
wait for completion () to return, signifying that the test is done.

We have made it through the bulk of the code. The next thing we need
to talk about is how the objects are built and hooked together. Then we
need to talk briefly about the test component and an example test.

Connecting It All Together

The testbench

270

The previous sections have discussed the interface components at the
various layers of abstraction. Now it’s time to put them together. The
first place we’ll start is the testbench, as it will create the instances and
connect them by means of channels. Then we’ll take a brief look at the
test component, which exercises the ingress or egress flow of traffic.
Finally, we’ll look at a basic test to send data in both directions.

The testbench is responsible for building the protocol components and
bringing the chip out of reset. We will not discuss bringing the chip out
of reset, as it is pretty much the same as in the tutorial. Building the
components, however, is something new.

The components are built in the testbench constructor. We will look at
the constructor in stages, as several different things are happening. First,
let’s look at some naming conventions that will be used in the testbench.

Because the UART protocol is bidirectional, there is a name for the traffic
flow in each direction. We will use the industry standard terms of egress
for traffic originating from the chip and flowing outward, and ingress
for traffic flowing inward.

Connecting It ALl Together

Building the channels

Did you notice that the generator, BFM, and checker agents need, among
other things, a uart channel in their constructors? Now, here in the
testbench, we build a channel, which is shown below:

uart channel program egress =

new uart channel ("program egress");
uart channel program egress tap =

new uart channel ("program egress tap");
program egress.add listner (program egress tap);
channel program ingress =

new uart channel ("program ingress");
channel protocol ingress =

new uart channel ("protocol ingress");
channel protocol ingress tap =

new uart channel ("protocol ingress tap");
protocol ingress.add listener (protocol ingress tap);
channel protocol egress =

new uart channel ("protocol egress");

Notice the add listener () call, which connects the put () method of
one channel to an arbitrary number of other channels. We use it here to
give the checker a copy of the generated data.

Building the configuration and interface port

After the channels have been built, there are two more things we need
to build before creating the models. They are the configuration and the

path to the pins.

Building the configuration is straightforward:

uart configuration = new (n);

An Object-Oriented Framework 271

Chapter 14: Block-Level Testing

Building the real (signal) interface to the pins is be done in a few steps.
In this example, we first declare the interface:

interface uart interface (

output reg dtr,

output reg dsr,

input rx,

output reg tx,

output reg cts,

output reg rts,

input baud rate clock
) i

endinterface

Next, we declare an instance of this in the real interfaces module:

module real interfaces;
uart interface uart interface 1 (top.DSR, top.DTR,
top.TX, top.RX, top.RTS, top.CTS,
top.BAUD RATE CLOCK) ;
endmodule

Then we define interfaces uart, the class that bundles together all
the interfaces of the chip. See the file interfaces uart.svh.

Finally, we bundle the interfaces into a class, so that it can be passed into
the testbench upon construction:

function truss::interfaces dut build interfaces ();
interfaces uart uart;
uart = new (real interfaces.uart interface 1,
real interfaces.wishbone driver interface 1,
real interfaces.uart 16550 interface 1,
real interfaces.top reset 1);
return uart;

endfunction

Once the testbench recovers this class by means of a downcast, all the
interfaces of the chip are available to the verification system.

272

Connecting It All Together

Building the component-layer objects

Now we are ready to build the components of the protocol, as shown
below:!

begin
uart bfm agent ba = new ("uart Protocol",
uart dut.uart interface 1, uart configuration,
protocol ingress, protocol egress,
UART CLOCK FREQUENCY) ;
uart protocol bfm = ba;
end
begin
uart 16550 agent sfm = new (
"16550 uvart",uart dut.uart 16550 interface 1,
uart configuration, program egress, program_ingress
UART CLOCK FREQUENCY) ;
uart program sfm = ba;
end

//build and hook up the ingress and egress stimulus
//and scoreboards of the interface

begin
uart generator agent gen agent = new (
"egress generator", uart configuration,
program_egress) ;
uart egress generator = gen_agent;
end
begin
uart generator agent gen agent = new (
"ingress generator", uart configuration,
protocol ingress);
uart ingress generator = gen agent;
end
begin
new uart checker agent check agent = new (
"ingress checker", protocol ingress tap,
program_ingress);
uart ingress checker = check agent;
end

begin

' In the Layered Approach chapter, we called the program side of a chip the
registers, and the protocol side the wires that follow a standard protocol.

An Object-Oriented Framework 273

Chapter 14: Block-Level Testing

274

uart checker agent check agent = new (
"egress checker", program egress tap,
protocol egress);

uart egress checker = check agent;

end

The generator and checker are used for both sides of the verification
process. This is appropriate, because the generator and checker should
have no idea of the connection policy or actual implementation details
of the protocol.

Note that the testbench code interface exposes only the base class, not
the agents. This allows different connection policies to be invisible to
the rest of the verification system. This means that we have to use a trick
when we build the derived objects. The trick is to use a local variable of
the derived class type and then new () that variable. Then we assign the
variable to the base class pointer that is our data member.

We are almost done with building all the lower-layer objects. We just
need to create the register access objects.

The wishbone objects

Building the wishbone objects is just a matter of building a driver and
memory bank, and then mapping the memory bank to an address range,
as follows:

//in interfaces uart.svh
interface wishbone driver interface (
input clock ,
output reg [31:0] address ,
output reg [31:0] data in ,
input [31:0]
output reg [

data out ,
3:0] select ,
output reg [1:0] op code ,
output reg do work ,
input work done
) i
endinterface
//and in interfaces uart.sv (module real interfaces)
wishbone driver interface wishbone driver interface 1 (
.clock (top.wishbone driver verilog.clk),

.address_ (top.wishbone driver verilog.address),

Connecting It ALl Together

.data_in_ (top.wishbone driver verilog.data in),
.data_out (top.wishbone driver verilog.data outr),
.select (top.wishbone driver verilog.select),
.op_code (top.wishbone driver verilog.op code),
.do_work (top.wishbone driver verilog.do work),
.work done (top.wishbone driver verilog.work doner)
)i

//and in testbench.svh

wishbone driver = new ("WB",

uart dut.wishbone driver interface 1);
begin
wishbone memory bank m =
new ("Wishbone",wishbone driver);

teal::add memory bank (m);
teal::add map ("main bus",
uart registers first, uart registers last);

end

The wishbone driver is created and handed to the
wishbone memory bank, which caches the pointer. Then, the
wishbone memory bankis added into the Teal memory system. Finally,
this newly added bank is mapped to the first through the last register
address of the UART 16550 interface of our chip.

That’s it! From this point in the code and onward, any teal: :write ()
or teal::read() to that address range will go through the
wishbone memory bank and then to the driver.

Whew, that was a lot of code! However, building all the components of
a testbench is a large job. We’ll now move up a level, looking at the test
component and then the test.

The test component

Compared to the testbench, the test component is simple. The testbench
pretty much just forwards its dance calls to the appropriate generator,
model, or checker, as follows:

class uart basic test component extends
truss::test component;
extern function new (string n, uart generator g,
truss::verification component b, uart checker c);

extern virtual virtual task do_randomize();

An Object-Oriented Framework 275

Chapter 14: Block-Level Testing

276

//shown in next section

virtual task time zero setup ();
bfm .time zero setup ();

endtask

virtual task out of reset(reset r)
bfm .out of reset (r);

endtask

virtual void write to hardware ()

bfm .write to hardware();

endtask

protected virtual void start components ();
bfm .start(); checker .start();

endtask

protected virtual void do generate();
generator .send block (words ,block delay);

endtask

protected virtual void wait for completion ();
checker .wait for completion();

endtask

rand protected teal::uint32 words_;

local teal::uint32 min words ;

local teal::uint32 max words ;

rand protected teal::uint32 block delay ;

local teal::uint32 min block delay ;

local teal::uint32 max block delay ;

endclass

We won’t go over the code above in detail; just take a look and notice
that most of the methods are one-line calls to the appropriate interface-
layer component.

The last few lines are interesting. They are the random variables that are
used by the do_generate () method to create random data. These are
the variables that will be controlled by the test (as well as by configuration
variables).

Connecting It ALl Together

The uart_basic_test_component::do_randomize()
method

The do generate () method is where the test component sends traffic
through the interface. It sends only one group of data, but that group
length can be any size. The next chapter shows how this method can be
called repeatedly.

The do_generate () method does only what it is told. The
do_randomize () method is responsible for choosing the appropriate
block length and delay for the block. Why do we separate these two
related methods? Because you may want different constraints and distri-
butions for the random parameters. Note the following:

task uart basic test component::do randomize ();

min words = dictionary find(name +
" min num words", 2);

max words = dictionary find(name +
" max num words", 4);

min bit delay = dictionary find(name +
" min block delay", 0);
max bit delay = dictionary find(name +
" max block delay", 10);
'truss_assert (randomize ());
endtask

Teal’s dictionary is used to see if any high-level code (such as a test) has
overridden the parameters. Then, the built-in SystemVerilog function
randomize () is used to generate the values, subject to the minimum
and maximum specified.

That’s all there is to the test component. Once a test creates one and
follows the standard Truss dance, traffic will be sent and checked through
the UART protocol!

Now let’s take a look at the test.

An Object-Oriented Framework 277

Chapter 14: Block-Level Testing

The basic data test

278

The only top-most component that we have not talked about is the test.
The test, like the test component, is straightforward. That is as we expect,
because the top-most layers should be obvious.

The test is fairly unremarkable. Here is an abbreviated look at its code
interface:

class block uart extends truss::test base;
extern function new (testbench tb, truss::watchdog wd,
string name) ;
//... All the usual dance methods, for example...
virtual task write to hardware();
uart test component egress .write to hardware ();
uart test component ingress .write to hardware ();
endtask
local testbench testbench ;
local uart basic test component
uart test component ingress ;
local uart basic test component
uart test component egress ;

endclass

The test builds two test components, one for inbound traffic and one for
outbound traffic. For each method, it just calls the same named method
on each component.

The authors realize that this can seem tedious, but at least you have all
the control. If you need to do some special pre- or postprocessing, it’s a
simple matter to add it. If you don’t want to call all the test components’
methods all the time, just leave it out. It there is a specific order you
need, or you need some extra communication between the test and the
test components, you can just add them.

One alternative, which the authors have used, is to have a global
sequencer. This is almost always a mistake, in that it makes the test
writer’s job harder. Remember the guideline—that “tedious and obvious”
is preferable to “less code and hidden.”

Connecting It ALl Together

The interesting part of the test is in the constructor, as shown below:

function block uart::new (testbench tb,
truss::watchdog w,
string n);
super.new (n,w);
uart test component ingress = new
("uart ingress", tb.uart ingress generator,
tb.uart program bfm, tb.uart ingress checker)),
uart test component egress = = new
("uart_egress", tb.uart egress generator,
//add configuration default constraints
teal::dictionary put (
{tb.uart configuration.name, " min baud"}, "4800",
teal::dictionary default only);
teal::dictionary put (
{tb.uart configuration.name, " min data size"}, "5",
teal::dictionary default only);
teal::dictionary put (
{tb.uart configuration.name, " man data size"}, "8",
teal::dictionary default only);
//add generator default constraints
teal::dictionary put (

"

{tb.uart egress generator.name," min word delay"}, "1"
teal::dictionary default only);

teal::dictionary put (
{tb.uart egress generator.name," max word delay"}, "3"
teal::dictionary default only);

/...

endfunction

This code does two things. First, it creates and wires up the ingress and
egress test components. Second, the constructor adds some parameter
values to guide the configuration selected and the amount of data to be

sent.

That it! We’ve made it through the first real-world test system!

An Object-Oriented Framework 279

Chapter 14: Block-Level Testing

More Tests

Summary

280

While the test in the example is sufficient for most of the “normal” cases,
there are still several things we should do to test the core fully. Besides
the additional features of the core, like loopback and FIFO depth trig-
gering, there are a range of error tests to be performed.

For example, one can test parity errors or stop bits, or perhaps the
sampling algorithm for the data bits.

There are also the external control pins, such DTR, DSR, and so on, that
should be exercised.

All of these tests, which must be written and performed, are beyond the
scope of this handbook.

This chapter ties together the last couple of hundred pages or so. We
built a verification system to unit-test a UART.

A configuration convention was covered. Truss does not address chip
configuration, because this is chip- and feature-specific. We did show
how the Teal dictionary can be used to get and set parameters globally.

An interesting part of configuring the chip was using the Truss register
defines with the Teal memory space. This provided a generic register
interface that could be mapped to any memory bank. In our case, we
adapted a wishbone Verilog model.

The policy of channels was selected to connect the transaction-level
classes with the connection-layer ones. We used the Truss pseudotem-
plated channel.

Checking the data was a little complicated, because the packets to be
checked were possibly a different size from when they were generated.

The test component, testbench, and test were described, with an emphasis
on the testbench constructor. This was where all the protocol objects
were created and the channels connected.

Chip-Level Testing

C HAPTEWR 15

And will you succeed? Yes indeed, yes indeed!
Ninety-eight and three-quarters percent
guaranteed!

Dr. Seuss

Testing at the block level is common. Testing at the chip level—the
highest system level we care about—is necessary. As you probably know,
it’s the system-level interactions among the various blocks that must be
tested. These system-level interactions are the focus of this chapter.

This chapter presents three main concepts:
m The chip now has four UART interfaces.

m We develop three tests, showing a progression from exercising all
of the protocols to demonstrating a generic test with irritators.

m We can adapt the original block-level test to be used at the system
level.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 281

Chapter 15: Chip-Level Testing

Overview

This chapter highlights Truss irritators. We’ll adapt the UART block-
level testbench to a system-level testbench that has four UARTSs. One of
these UARTSs will be randomly chosen to be the focus of the test, while
the other three will serve as background traffic irritators. While this
chapter uses UARTS for the irritators, the idea is generic.

Theory of Operation

This verification system builds upon the block-level UART system. We
will adapt the components developed in the last chapter, and add a few
new tests. These tests will show how irritators are used.

Here are the main components involved in the simulation:

Quad UART Example: Objects and Connections

testbench.v

quad_uart_top

Verilog
wishbone driver

wishbone_driver

. teal::write()

, 1
Wt_interface ‘ uart_interface ‘ ‘ uart_interface ‘ ‘ uart_interface ‘

[uart_basic_test_component | | uart_basic_irritator | [uart_basic_irritator | [uart_basic_irritator]

quad_uart_vectors

One difference from the block-level system is that the testbench now
does not directly build each of the four UART interface’s objects (such
as the generator, checkers, agents, and so on). This is left to the

282

Theory of Operation

uart_group class, which is called by the testbench. Another difference
is that three of the interfaces are exercised by irritator objects.

As with all good projects, this project steals! code (in our case, from the
block-level UART code). The UART BFM, generators, and checkers are
reused without modification. We modify the UART 16550 SFM by adding
an integer ID, which is used to form the specific UART address.

The UART test component is also reused directly. In addition, we inherit
from the test component to create an irritator class. So, we added only a
few lines of code to the block-level test.

We will develop four tests. One is the previous chapter’s block-level test,
with modifications to select one of the four UARTS. The other three tests
exercise all four UARTSs at once and show the test development progres-
sion from a simple group of test components to a single test component
and a list of irritators. Because the irritators are a Truss common base
class, this final test can be used as model for random tests in the Truss
environment.

Verification environment

Looking at the verification environment, we see that it is very similar to
that for the single UART. We still have the wishbone driver to access the
registers, this time mapped to a larger region. We still have all the main
players from the block-level UART.

Looking at the HDL side, the testbench environment is fairly straight-
forward. The only different module, quad uart top, instantiates four
UARTSs and maps their write enable and read select according to the
upper address bits. The testbench environment is shown below.

I Uhhh, adapts.

An Object-Oriented Framework 283

Chapter 15: Chip-Level Testing

Quad UART Example: HDL Connections

uart_testbench

a &

1
1

clock
reset_n

-
address 32 testbench.v tx 0 t’l £
©
- data 32 — 40 Sa
2 | |la |
= select 2 _‘12’ S £ E
o 25| | x1 |85
[= 9 ©
8 G5l |3 x2 e
G op_code 2) > é 9 x 2 5 =
2 do_work 1 G
tx3 . ¢
1 L] =
rx_3 S35
work_done

Running the UART Example

There are four tests in the example. Running an example is simple in
Truss. To run a test, type one of the following:

$TRUSS HOME/bin/truss --test block uart --config block
$TRUSS HOME/bin/truss --test quad test components
$TRUSS HOME/bin/truss --test quad uart irritators
$TRUSS HOME/bin/truss --test quad uart vectors

The quad_uart_test_components Test

The quad uvart test components test is the first test for the chip that
the authors wrote. We were just making sure that all the UARTSs could
be addressed. This test chooses four different random configurations and
sends a random-length block (with random block delays) to each ingress
and egress channel. Here is the constructor part of the test:

284

The quad_uart_test_components Test

function quad uart test components::new (
testbench tb, truss::watchdog w, string n);
super.new (n, w);
testbench = tb;
'truss_assert (number of uarts >= 2);
for (teal::uint32 i(0); i < number of uarts; ++i) begin
string id = $psprintf ("%04", 1i);
uart test component ingress [i] =
new ({"uart test component ingress ", id},
tb .uart group[i].uart ingress generator,
tb_ .uart group[i].uart program sfm,
tb_ .uart groupl[i].uart ingress checker);
standard generator (
tb .uart group[i].uart ingress generator.name) ;
uart test component ingress [i].do randomize ();
uart test component egress [i] =
new ({"uart test component egress ", id},
tb .uart groupl[i].uart egress generator,
tb .uart group[i].uart protocol bfm,
tb .uart group[i].uart egress checker);
do generator (
tb .uart group[i].uart egress generator.name);
uart test component egress [i].do randomize ();
do_configuration (
tb .uart groupl[i].uart configuration.name);
end

endfunction

This example scales up nicely from the block-level tests we have seen.
The rest of the test’s methods are fairly boilerplate, and do not need any
special attention.

An Object-Oriented Framework 285

Chapter 15: Chip-Level Testing

The quad_uart_irritators Test

The quad_uart irritators testis the second test for the chip that the
authors wrote. In this test we have randomly selected one UART as the
focus of the test (that is, by using a test_component), and we have an
array of three UART irritators. What are these uart _irritators? Let’s
take a look at the class.

UART irritator class

286

Remember that a Truss irritator is a way to adapt a test component to run
as background traffic. The test component’s run traffic () method
will be called repeatedly until the test decides its time to stop. Here is
the interface for the UART test irritator:

class uart basic irritator extends truss::irritator;
local uart basic test component basic test component ;
function new (string n,
uart generator g,
truss::verification component b,
uart checker c):
super.new(n);
uart basic test component = new (n,g,b,c);
endfunction
virtual task out of reset()
basic test component .out of reset();
endtask

endclass

The vart basic irritator classis a truss::irritator and owns
abasic_test component. This makes sense, as the code interface will
follow the Truss irritator model and the implementation will use the
uart basic_test component, which is unchanged from the block-
level test. This is a major advantage of Truss: the same test component
can be reused from the block level to the system level. Also, because a
testbench is not mentioned anywhere in the test component, the test
component can be moved to different projects easily. This is not acci-
dental, but rather is a direct result of the layered approach talked about
earlier in this handbook.

The quad_uart_irritators Test

Let’s take a look at the rest of the methods.

virtual function void report (string prefix);
basic test component .report (prefix);
endfunction
virtual task time zero setup ();
basic test component .time zero setup ();
endtask
virtual task out of reset (reset r);
basic test component .out of reset (r);
endtask
virtual task write to hardware ();

basic test component .write to hardware ();

endtask
virtual task wait for completion ();

basic test component .wait for completion ();
endtask

virtual protected function void do randomize ();
basic test component .do randomize ();
endfunction
virtual protected task wait for completion ();
basic test component .wait for completion ();
endtask
virtual protected task start components ()
basic test component .start components ();
endtask
virtual protected task do generate ();
basic test component .do generat2();
endtask
virtual task inter generate gap ();
checker .wait actual check();
endtask

Notice that all the methods (save one) just call their
basic_test component method. This is a standard form, tedious
indeed, but it gives the coder the ability to add special code if needed.
Again, this is the tedious but obvious guideline coming into play.

There is one method, inter generate gap (), that is not just calling
the test component’s method. This is because this method is specific
to an irritator. In our case, we know that the checker is derived from the
Truss checker, and so has a method to wait until expected or actual data
are checked. This is an appropriate throttling method for our irritator.

An Object-Oriented Framework 287

Chapter 15: Chip-Level Testing

The test

288

As coded here, this method pauses the generation until a data packet is
checked. We could have done fancier things, such as have an initial
number of packets in play, or change the delay depending on the actual
data bytes generated.

That’s it for the irritator! In less than two dozen lines code, we have
added the ability to use any UART interface as background traffic.
Furthermore, the interface is that of a generic irritator, able to be plugged
into any test that has a list of truss::irritators. This is shown in
quad_uart irritators, the first test to use irritators. Let’s take a look
at the test.

Of course, we also have a test component that is the focus of the test.
This test is a little confusing, in that we use a UART for both the test
component and the irritators. Nevertheless, this is what we have to test.
Here are the interesting parts of the test’s code interface:

parameter uint32 irritator count = number of uarts - 1;
class quad uart irritators extends truss::test base;
extern function new (testbench tb, watchdog w,
string name);
VA
local testbench testbench ;
//The focus of the test
local uart basic test component uart ingress ;
local uart basic test component uart egress ;
//The background traffic components
uart basic irritator
uart irritator ingress [irritator count];
uart basic irritator
uart irritator egress [irritator count];

endclass

This test uses a fixed array of irritators. In this test they are explicitly
called out as uart basic irritator. This use of a specific irritator
type will be made more generic in the next test.

The quad_uart_irritators Test

Let’s take a look at the implementation of the constructor:

function quad uart irritators::new(testbench tb,
truss::watchdog w, string n);
super.new (n, w);
testbench = tb;
'truss_assert (number of uarts >= 2);

endfunction

Where did all the code to initialize the test components go? That code
is moved into the do_randomize () method, because now the test has
some random behavior. In this case, randomization determines which
UART interface to pick for the test_component. Here is the

do_randomize () method:

task quad uart irritators::do_randomize ();
//First, for the main point of the test...
min index =
dictionary find ({name ," min uart index"}, 0);
max index =
dictionary find ({name ," max uart index"}, 0);
'truss_assert (randomize ());
log .info($psprintf ("Selected uart %0d", uart index));
begin
int i = uart index ;
string id = $psprintf ("%04d", 1i);
uart test component ingress [1] =
new ({"uart test component ingress ", id},
tb .uart group[i].uart ingress_generator,
tb .uart group[i].uart program sfm,
tb .uart groupl[i].uart ingress_ checker);
/..
standard generator (
testbench .uart group[i].uart ingress generator.name);
uart test component ingress [i].do randomize ();
uart test component egress [i] =
new ({"uart test component egress ", id},
tb_ .uart groupl[i].uart egress generator,
tb_ .uart group[i].uart protocol bfm,
tb .uart groupl[i].uart egress checker);
/] ..
do_generator (
testbench .uart groupl[i].uart egress generator.name);

An Object-Oriented Framework 289

Chapter 15: Chip-Level Testing

uart test component egress [i].do randomize ();
do_configuration (
testbench .uart groupli].uart configuration.name);
end
begin
//now for the irritators...
teal::uint32 count = 0;
for (teal::uint32 i(0); i < number of uarts; ++i)
begin
string id = $psprintf ("%04", 1i);
uart group if = tb .uart interfaceli];
'truss_assert (count < irritator count);
if (1 != uvart index)
begin
uart irritator ingress [count] =
new ({"irritator ingress ",id},
if.uart ingress generator,
if.uart program sfm,
if.uart ingress_checker);
uart irritator egress_ [count] =
new ({"irritator egress ",id},
if.uart egress generator,
if.uart protocol bfm,
if.uart egress checker);
do generator (if.uart egress generator.name);
do generator (if.uart ingress generator.name);
count++;
end
end
end

endfunction

Okay, that code is a bit long—but it is straightforward. First, a UART
protocol is chosen to be the focus of the test. Then it is built and
randomized. After that, the rest of the UART interfaces are packed into
test irritators and randomized.

290

The quad_uart_irritators Test

Now that all the components have been built, let’s look at a typical test
method:

task quad uart irritators::start ();

uart test component ingress .start ();

uart test component egress .start ();
for (teal::uint32 i = 0; i < irritator count; ++i)
begin
uart irritator ingress [i].start ();
uart irritator egress [i].start ();
end
endtask

All the methods of the test follow this form. They first perform the action
on the test component, and then on the irritators. The

wait for completion () is similar:

task quad uart irritators::wait for completion();
uart test component ingress .wait for completion ();
uart test component egress .wait for completion ();
for (teal::uint32 i = 0; i < irritator count; ++i)
begin
uart irritator ingress [i].stop generation ();
uart irritator egress [i].stop generation ();
end
for (teal::uint32 i = 0; i < irritator count; ++i)
begin
uart irritator ingress [i].wait for completion ();
uart irritator egress [i].wait for completion ();
end
endtask

Notice that wait for completion () first waits for the focus of the test
to complete. Then it tells the irritators to stop, and then waits for the

irritators to complete.

Remember, that after this wait for completion () returns, the test is

done.

An Object-Oriented Framework 291

Chapter 15: Chip-Level Testing

The quad_uart_vectors Test

The quad uart vectors test is the logical evolution of the previous
test. We get more fancy. Instead of a fixed array, we use a dynamic array.
Here are the relevant parts of the test header file:

class quad uart vectors extends truss::test base;
extern function new (testbench tb, truss::watchdog w,
string name) ;
//standard Truss methods not shown
//as before:
local testbench testbench ;
local uart basic test component uart ingress ;
local uart basic test component uart egress ;
//new stuff!
truss::irritator irritators [$];

endclass

The do randomize () method is very similar to that used in the
quad_uart test components test, with a small difference. Here we
build irritators, not test components.

uart basic irritator bi =
new ({"uart irritator ingress ", id},
if.uart ingress generator,
if.uart program sfm, if.uart ingress checker);

irritators_ .push back (bi);

The methods all follow a standard form, but for those not familiar with
the macros, they can look unnatural. Here is one example method:

'define for each(data, method) \

for (integer i1 = 0; i < data.size (); 1i++) \
begin \
data[i] .method (); \
end
task quad uart vectors::time zero setup ();
uart test component egress .time zero setup ();

'for each (irritators , time zero setup);
endtask

292

The block_uart Test

The 'define allows usto operate on an entire array with a small amount
of code.

The methods are just a little more complicated for the Truss methods
that have a parameter:

'define for each 1(data, method, param)\
for (integer i = 0; i < data.size (); 1i++) \
begin \
data[i] .method (param); \
end
function void quad uart vectors::report (string p);
uart test component ingress_ .report(p);
uart test component egress .report(p);
'for each (irritators , report, p);

endfunction

This last form of the test contains the fewest lines and also uses a macro.
It’s up to you to decide whether this is appropriate for your system.

The block_uart Test

The block uart test is just a rework of the block-level test. The only
changes were to use the testbench’s uart interface objects, and to
select a protocol to exercise.

Summary

This chapter took alook at a system-level verification system. We adapted
the components from the block-level test.

The first test just re-used the test component from the block-level test
on all four UART protocols.

The next test brought in the concept of irritators, background traffic for
the main test.

An Object-Oriented Framework 293

Chapter 15: Chip-Level Testing

294

The system-level test quad uart vectors was used to show how
dynamic arrays and macros can be harnessed to make small, efficient,
standard-form code.

In general, this chapter showed that many block-level components could
be adapted without modification to the chip-level testbench. We did,
however, need to modify the uart 16550 sfm to handle a specific
address range.

Things to
Remember

“There goes my tail again.” —Eeyore
Paraphrased from Winnie-the-Pooh, by A.A. Milne

An ending is, by definition, a new beginning. This, the last chapter,
provides a good opportunity to review some of the handbook’s main
points. The authors sincerely hope that this is also a beginning for you
to benefit from using some of the techniques presented in the preceding
chapters.

This chapter is the 30,000-foot view of what we have covered. A wise,
experienced manager once told the authors, “If you want your team to
remember something, tell them at most three things.” We take that
advice—sort of—and present the three most important ideas of each part
in the book.

We hope that this handbook, and its accompanying code, was and will
continue to be useful. In the end, however, it is your job to verify the chip.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 295

Chapter 16: Things to Remember

Part I: Use SystemVerilog and Layers!

In the first part of the book we introduced verification, SystemVerilog,
object-oriented programming, and what a layered verification looked
like. Here are the important points:

[SystemVerilog is a good language for verification.
] Use OOP techniques for verification, but not to excess.
m Layering is the main technique for a verification system.

The verification world is a bit enamored with OOP. We are probably in
the early stages of settling down and using it, or not, where appropriate.
By using OOP techniques we can communicate our architectural intent
clearly.

The concept of layering, formally described as abstraction, roles, and
responsibilities, is perhaps the single most important technique we can
use. We presented terms for layers that we later implemented as classes
and conventions.

Part Il: An Open-Source Approach

296

In this part of the handbook we presented some code that has proved
useful to us and those at other companies. That code may not have
everything you want, but it should be flexible enough for you to adapt it
to your needs. We noted specifically the following:

[] Teal is a set of useful classes and features for verification. These
are the building blocks of functional verification.

] Truss provides a flexible, yet well-defined, application framework
for verification.

] A simple, but complete, example can be useful.

This part of the handbook is what most books lack. The authors take all
the theory and lessons learned and show you how they have built verifi-
cation systems. Make no mistake, Truss is a verification methodology.
Teal is a bit more open, but any implementation of a programming concept
contains the prejudices and biases of the implementors.

Part Ill: OOP—Best Practices

The point of the example is to show how these implementations, Teal
and Truss, can be useful.

Part Ill: OOP—Best Practices

In this part of the handbook we took a long look at OOP. We talked about
how to “think OOP” and how to “code OOP.” Here are the three main
points of this section:

[OOP is a powerful tool for managing complexity and creating
adaptable code.

m There are lots of techniques, and most of them involve balancing
trade-offs.

] The code should make minimal assumptions, and make those
assumptions as obvious as possible.

As the complexity of the chips increased, so did our verification systems.
OOP can be used to increase the communication among engineers.
Basically, this means creating code that others can reason about.

The hundred pages or so of the middle part presented lots of lessons
learned. There were techniques, guidelines, and horror stories. There
were no absolute right or wrong answers. You and your team must decide
what is appropriate.

If a bit of code has a well-defined purpose as well as obvious dependen-
cies, it stands a good chance of being reasoned about and eventually
understood. The objective is to minimize the assumptions about the code,
while still doing something worthwhile.

An Object-Oriented Framework 297

Chapter 16: Things to Remember

Part IV: Examples—Copy and Adapt!

We could have left the book with only three parts—but one example and
some code snippets are usually not enough to help you understand a set
of techniques or some new code. Consequently, we wrote some more
examples. The following summarizes the main points of these examples:

m You can create portable verification IP that other projects can use.

(] Separating the chip-specific parts from the protocol-generic parts
shows users what they have to modify for their project.

] The testbench and test components can become large, but they are
still “reasonable.”

This section of the handbook presented more examples of chips and their
verification systems, all the way to a final example that used all the
previous examples. We would not be surprised if the code has mistakes
and can be made even more clear. Yes, we’ll probably even get some
complaints, but we know of no better way for you to learn the ideas and
techniques talked about in this handbook than to see working, completed
examples.

Conclusion to the Conclusion

298

The authors have tried to make a handbook that is useful. We’ve combined
verification and OOP, and described techniques that have proved useful.

We did not separate the verification techniques from the language used
to express them. To do that would have made the book easier to write.
However, you would have been reading just a book, not a handbook. You
should be able to find in these pages—and on the code freely available
at www.trusster.com—enough examples that are sufficiently close to
what you want to do. Cut, copy, and paste away!

Please contact us at www.trusster.com. On this site you can also find up-
to-the-minute information about Teal and Truss, as well as discussion
boards where users share knowledge and ideas. It’s a good place to start
for any Teal or Truss questions.

Conclusion to the Conclusion

It’s also where we will post errors found in this handbook. We invite
your comments and suggestions.

Please stay in touch with us, at www.trusster.com.

“

. and now for something completely different. 1

! From Monty Python’s Flying Circus, episode 26, December 1971.

An Object-Oriented Framework 299

Index

Symbols

"e" 30

#(drive_delay) 144

#include 77

$finish 102

$root scope 42

$SIM 124

$TRUSS_HOME/bin/truss 123
$TRUSS_HOME/bin/truss --help 124
$TRUSS_HOME/bin/truss --test block_uart --config block 284
$TRUSS_HOME/bin/truss --test quad_test_components 284
$TRUSS_HOME/bin/truss --test quad_uart_irritators 284
$TRUSS_HOME/bin/truss --test quad_uart_vectors 284
$TRUSS_HOME/bin/truss --test tutorial_test 142
'define 293

'field_get() 234

'field_put 262

'field_put() 234

'include 241

'PURE 38

*sv 40

*svh 40

.sv 39

.svh 39

tool_rc files 123

/alu 139

/bin 139

/examples/alu 139

/examples/alu_tutorial/bin 142
/examples/single_uart/bin 255

/results 139

/rtl 139

/test_components 139

Hardware Verification with C++: A Practitioner’s Handbook

301

Index

/testbench 139

/testbench/ 139
/testbench/top 139

/tests 139
/truss/inc/truss_channel.h 128
/verification 139
/verification/testbench/top/hdl_paths.ve 139
/verification/vip/wishbone 264
/vip 139

; 224

? operator 225
@(posedge(iface_.clk)) 176
_ 238,242

_ 239
__uart_configuration_chooser 259
_agent 131

_dma 230

_fifo 230

_max 263

_min 263

_pic 230

_vip 230

“e,” 32

Numerics
16550 RTL 250

A
A Few Good Men from UNIVAC 67
A.A. Milne 295
Abraham Maslow 47
abstraction

layers 54, 180

level 174,225
access 196

control 33

control labels 33

rules 244
action object connection 220
adaptability 163, 168
adaptable code 155, 257
add_listener() 271
add_map() 80, 83
address map 184

Advanced Microcontroller Bus Architecture 108

agent 127, 129
layer 54, 56, 127
agile manufacturing 171

302

AHB 108
ahb_test_component 110
Ajeetha Kumari 21
aldec 123
ALU 134
chip test 140
example 141
alu_driver.cpp 144
alu_input_ 144
alu_test 141
alu_test_component 145
always 254
AMBA 108
Andreas Meyer 6
Andrew Zoneball xxi
application framework 89
array 36
arsenal 154
ASICs 3
assembly language 25
assert() 166
assertion 166
language 15
nontemporal 15
SystemVerilog 19
assignment statements 225
assigns 186
ATM 185

B
back pressure 122, 128, 135
back-door mechanism 79
background
noise generators 62
traffic 105, 282
traffic components 64
base class 49, 176, 198
abstract 37
test pointer 187
virtual 37, 106
base test object 187
basic_bfm 45

basic_test_component 286, 287

baud rate 240

beauty 223
befuddlement 153
Ben Cohen 21
Benjamin Franklin 189

BFM 37, 54,94, 175, 191, 199, 200

agent 199, 200, 210 checking 146, 184

bidirectional protocol 267 checking side 267
bin 123 chip programming 261
bind construct 19 Chris Spear 20, 46
bins 18 class 13, 26,42, 190
Bjarne Stroustrup 1, 188 base 49
block length 277 burst memory 195
block_test.sv 250, 251 channel 128
blocking method 216 ethernet_monitor 53
block-level testbench 282 helper 259
BOOK_HOME 255 inheritance 36, 168
boot source 167 library 72
bottom-up approach 51 middle layer 62
brittle code 207 monitor 53
broadcast 128 names 241
mechanisms 56 parameterized 128
build_interfaces 126 pci_express_monitor 53
build_interfaces() 100, 101, 118, 143 pseudo-templated 128
build_interfaces.svh 101 utility 259
burst 195 verification_base 38
bus 233 vlog 72
contention 105 vout 72
functional model 37, 54, 94, 175, 199 vrandom 73
byte 19 classes 32,47,192
--clean 124
C clock
C 25,30 domain 206
C++ 24 clocking blocks 19, 144
cache coherency unit 183 c-model 13, 140, 146
Cadence Specman “e” 12, 20 prototype 146
callbacks 218 code
CAN 229 adaptability 163
CAN node 231 buddy 163
can_fifo 231 interface 28
can_node 229 layers 48
capitalization 244 leader 162
case 178 reviews 163
channel 127, 128, 208, 219, 266, 267, 268, 270 code interface 28
class 111, 128 coffee break 149
connection 219 cohesion and coupling 188, 222
policy 267 colliding names 178
channel::get_data() 208 common currency 52
channels 130, 265 common resource 206
check loop 148 compile error 35
checker 57, 106, 182, 184, 191, 208, 212, 213, 255, completed_ 148
268 complexity 154, 155
agent 267 component layer 53
checker.sv 146 condition
checker_agent 130, 268 status register 183

A Practitioner’s Handbook 303

Index

variable 109, 126
--config 139
configuration

class 256

object 261

settings 256
configuration_16550 260
congestion bugs 122
connection 180

action object 220

channel 219

layer 52, 54

loose 208

peer-to-peer 209

policy 56, 267,268

pull 210

push 209

thread-safe 207, 214

tight 207

unbalanced 209
connection-level object 106
connections 55, 206
constraint 96
constraint language 16
constructor 34
consumer 128
container class 220
continue_generation() 111
control/status register field 177
Controller Area Network (CAN) 229

protocol 209
conundrum 154
convention 92, 242
core 251, 260, 280
corner case 4, 62, 105
correct by construction 166, 176, 178, 188
counter

start-of-frame 161
coverage 18, 19

range 18

sublanguage 18
CPU operation 133
cpu_generator 133
cpu_monitor.sv 145
CRC 215
crc_corruptor 215
CSR 193

field 177
CSR (condition status register) 183

304

current best answer 157
Cyclic Redundancy Check (CRC) protocol 215

D

D.L. Parnas 67
dance 55,91, 94, 115, 116, 250, 255, 261, 275
data
abstraction 26
derived 180
dropped 185
duplication 180
hiding 26
mapping 178
members 234
word size 265
data_checker 208
data_completed 218
data_generator 208
data_packet.sv 198
data_size 263
David E. Lundstrom 67
debug message 72
debugging 251
decomposition 67
define 104, 192, 240, 262, 263
delay 111, 122, 148,277
mechanism 111
depth 128
derived data 180
descriptor 233
class 33,34
design 173, 174
directions 68
error 182
mistakes 173
patterns 67
Design and Evolution of C++, The 34
Design of Everyday Things, The 188
device under test 4
diagnostics 251
dictionary 77, 94,96, 118
function 73
dictionary_find() 134
dictionary_put() 134
dictionary_read(std::string) 77
directed tests 94
DMA 32, 56, 94, 180, 229, 267
block sizes 268
buffer 183

channel 183 enum 19, 159, 231, 240, 258

checker 182 enumeration 155, 177, 181, 240
descriptor 32 environment variables 123
descriptor queue 233 equal() 185
enable 183 error
engine 180 counting 74
generator 32 message 72
offset 183 error_threshold 149
dma_test 170 essential complexity 155
do_action() 218, 220 Ethernet 185
do_generate() 107, 126, 276, 277 driver 38, 39
do_generate_() 120, 126 interface 40, 52, 202
do_handler() 161 Media Access Control 181
do_op 144 multicast packets 213
do_randomize() 37, 107, 120, 203, 258, 259, 260, packets 197
277,289 ports 104
do_tx_thread() 267 subsystem 161
do_work 254 ethernet_basic_packet 104
do_work_ 264 ethernet_checker 177
dogma 226, 244 ethernet_data 203
Donald A. Norman 188 ethernet_monitor 53
Donald E. Knuth 188 event 214, 220, 269
done_generate_() 129 exercise 63
double underscore 239 extern 39
Douglas Adams 173
downcasting 100 F
Dr. Seuss 281 factory
driver 191 function 187, 228, 237
wishbone 264 objects 67
driver_agent 130 FAE (field application engineer) 14
dropped data 185 fanatic 244
DSR 280 field name 234
DTR 280 field-programmable gate array (FPGA) 3
duplication 180 FIFO 56, 185, 229, 267
DUT 4 depth triggering 280
interrupt trigger points 268
E file
e 30 header 39
EDA (electronic design automation) 14 name 241
Edsger Dijkstra 188 source 39
Eeyore 295 files 78
efficiency 181 filtering 74
egrep 241 filters 196
egress 270 final_report() 37
electricity 190, 191 find 134, 241
embedded processor 261 find() 78
end condition 62 foosball 149
endpoints 177 force_parity_error 78
ends-in approach 51, 250 FORTRAN 25

A Practitioner’s Handbook 305

Index

FPGA 3 helper classes 241
fractal structure 119 Henry Ford 71
frame 161 hierarchy trees 27
framework 31 Hitchhiker’s Guide to the Galaxy 173
layer 28 host node 156
Frederick Brooks 67, 171 housekeeping 109
function
dictionary 73 |
virtual 192 /0 154
functional verification 3 1/0 subsystem 184
identifiers 198, 243
G idiom 236
gap 135 IEEE 20
gate level 11 1076, 1647 20
gather data 144 1076, 1800 20, 46
generator 57,73, 92, 106, 182, 191, 208, 255 1364-1999 20
agent 267 1995-2001 20
generator/checker class 200 if test 166, 192, 224
generator_agent 129 ifdefs 146
get() 195,237 IKEA 115
global illegal state 215
components 165 implementation complexity 155, 156
functionality 99 import 41
names 178 import clause 179
resources 179 import keyword 179
sequencer 278 include
service 193, 196, 237 file 41
state 235 include directories 139
godfather 162 Industrial Revolution 27
Goethe 23 in-flight data 97
golden file 29 ingress 270
Gordon Moore 3 Ingvar Kamprad 115
Grace Hopper 25 inheritance 26,36, 153,170, 177, 198, 199, 200, 212
grouping 27 for code interface 37
guidebook 243 for functionality 27, 36
guidelines 243 for interface 28
inheritance-based interconnect 219
H inherited class 105
hanging 228 init() 159
HDL init_() 230
timeout 102 init_with_seed() 84
wrappers 186 initialization 96
HDL (hardware description language) 10 inspection 29
HDL top 186 instance
hdl_paths.vc 125 name 242
header file 39, 179, 205, 241 pointer 35
—help 124 instantiation 32
helper class 259 int union 19

Intellectual Property 40

306

intent 25, 34, 176, 178, 257
inter_generate_gap() 111, 287
inter_generate_gap_() 122, 135
interface 42

block 51

defined 28

my_interface 129

UTOPIA 210

wishbone 251
interfaces<chip_name>.svh 101
interfaces_.svh 101
interfaces_dut 99, 100
intergenerate delay 148
Inter-Integrated Circuit 167
intermediary object 128, 208
interpreter 182
interrupt 160, 161, 180, 185

code 155

handlers 160

vector 193
interrupt_handler 161
interrupt_scoreboard 160
io_unit 176
io_unit.top.driver 176
IP 40, 251
IP (intellectual property) 1
irritator 61,62, 64,91, 102, 105, 106, 112, 121, 135,

282
I-squared-C interface 167

J

Janick Bergeron 6

Jim Coplien 171

John Backus 25

Joint Test Action Group 234
JTAG interface 234

K

key 233

key algorithm 90
knob 17,132

L

language
assertions 15
constraint 16

latch 86

latency 148, 185

A Practitioner’s Handbook

layer 47
abstraction 54
agent 54, 56
code 48
component 53
connection 54
middle 61, 62,250
test 51
top 58
transaction 54, 57
upper 56
layering 47,71
lcd_parameters.svh 179
lcd_parameters:: 179
Lean Software Development 171
legal
configuration 257
length 32
level of detail 174
libraries 5
linked_list_descriptor class 36
listener 128, 218, 220
Literate Programming 188
local 13,33
logger 196
logging 72, 74, 94, 96
look-up table 263
loop constructs 225
loop_body() 144
loop_body_() 144
loop_condition() 144
loop_condition_() 144
loopback 280
loose connection 208

M
MAC 181
machine language 25
macro 292
macros 192, 243
magic 159
code 154
mailbox 128
Mary and Tom Poppendieck 171
master 108, 209
master-slave connection 209
master-to-slave 209
match_id() 161
Media Independent Interface 181

307

Index

mediocrity 115
member
methods 35
variables 35
memory 79
access 80, 261
arrays 80
functions 73
map 165
package 194
Teal 234
transactors 80
memory.svh 194
memory_bank 196, 263
memory_bank object 79
mental
complexity 181
fog 153
state 225
message
debug 72
error 72
logging 193
passing scheme 209
method 26, 47
calls 37, 191, 216, 255
nonunderscored 238
static class 195
middle layer 61, 250
middle layer class 62
MII 181
mistake 41
mnemonic 242
module 27, 42, 192
in use 228
monitor 73,94, 191, 215
base class 53
Monty Python 153,299
Moore’s law 3
mti 123
multilayer protocols 181, 185
multinode protocol 229
mutex 233
mutual exclusion 233
muxes 186
My style is the best! 242
Mythical Man-Month, The 67, 171

308

N

name collisions 41
names 241, 242

ncsim 123

negation 227

neighbor 193

Neil Harrison 171

new() 34

noise 121

nonessential traffic 65
nontemporal assertion 15
nonunderscored methods 238
null 35

o

object-oriented
concepts 26
programming 1
OHCT 253
On the Criteria To Be Used in Decomposing Systems
into Modules 67
OOP 1
OOP bicycle 153
op_code 144
op_done 144
Open Host Controller Interface (OHCI) 253
OPENCORES 251
code 264
OpenVera 12, 20
operand 133
operand_a 133, 144
operand_b 144
operation_completed() 144
operation_done 147
operator 133
operator overloading 192
Organizational Patterns of Agile Software
Development 171
out_of_reset() 37,96, 104, 107, 126, 143

P
package 40, 178, 192, 193
memory 194
pci_x 40
packet 58
test 63
packet_received() 199
packets in flight 111

parameterized classes 128
parity error 78, 280
Pascal 25
payload class 202
payload_base 202
PCI 177,234
PCI Express 156, 185
interface 52
test 61
pci_checker 177
pci_endpoint 177
pci_express_monitor 53
pei_x package 40
peer-to-peer connection 209

Peopleware: Productive Projects and Teams 171

peripheral interface controller (PIC) 229
Perl 123
phases 37
physical layer 181
pipe 128
pipe stages 147
Plato 223
PLL 118
plug-in behavior 118
pointer 36, 192, 211
instance 35
portability 180
post_ 239
post_randomize() 239
post_run() 159
postamble 238
postprocessing 74
power-on reset 143
pre_ 239
pre_randomize() 239
preamble 238
premature optimization 188
presence or absence test 225
Principles of Functional Verification 6
print() 35,203
printf 137
procedural
languages 25
process_command() 176
processor 261
producer 128
productivity 48
program 42
PROJECT_HOME 123, 255

A Practitioner’s Handbook

protected 33
protocol
bidirectional 267
error generator 214
protocol_monitor 215
public 28

nonvirtual method 238

pull connection 210
pure

virtual function 38
pure virtual

method 38, 169
push connection 209
put 134
put() 271
put_to_DUT() 203

QDR RAM 166
quad data rate 166
quad_uart_irritators 288

quad_uart_irritators test 286
quad_uart_test_components test 284

quad_uart_top 283
quad_uart_vectors test 292
question mark operator 225
queue 220

R

RAM 166

RAND_32 85

random
generator 30
numbers 84
testing 29

RANDOM_RANGE 85

randomization 16, 94, 126, 133, 256, 258
randomize() 27, 118, 258, 277

randomness 29

random-number generator 73, 84

read() 80, 81, 194

real_interfaces 101, 118, 126, 272

receive_completed_() 267
receive_message_() 230

Reduced Media Independent Interface 181

ref concept 19
reference
model 229

309

Index

register 229, 256, 267 sequence numbers 197
access 196 sequencer 278
access objects 274 sequential calls 235
defines 261 setup 123
set 251 setup script 139, 142
transfer level (RTL) 11 SFM 253
religious war 242 agents 267
report() 92, 102, 104, 119, 148 shortreal 19
requestor 182 shutdown 112
reservation 233 silver bullet 154, 171
reset 96, 143 SIM 123, 255
reset_n 143 Simula 26
resolution 34 simulation
resource 233 speed 182
reuse 27 time 60
ring 36 waveforms 29
RMII 181 --simulator 124
roaming 62 SIMULATOR_HOME 123, 255
Robert McCloskey 137 single method 194
Roger S. Pressman 20, 188, 222 singleton 43, 179, 194, 195, 237
RTL 11, 123, 139 Sir Walter Scott 205, 249
rtl 125 size() 269
--run 124 slave 108, 209
run 142, 186 SNUG (Synopsis Users Group) 21
script 123 SoC 154
run_component_traffic_() 107, 120, 122 Software Engineering
run_loop 144 A Practitioner's Approach 20
run_traffic() 121, 286 Software Engineering: A Practitioner’s
run_traffic_() 110 Approach 188, 222
run-time checking 178 software functional model (SFM) 253
run-time errors 35 source file 39
spatial locality 235
S Specman 24
sampling algorithm 280 spelling 134
Saul Steinberg 4 spells 162
scenario files 73 sreport() 258
scope 26, 34 Srinivasan Venkataramanan 21
of concern 174 standards 20, 46
rules 244 start of frame 161
scoreboard 160 start() 37,92, 96, 104, 107, 120, 126, 159, 237, 238
script 123 start_() 107,230, 238
-—seed 124 start_components() 107
seed 30, 73, 85 start_components_() 145
seed value 124 start_of_data 218
send_block() 265 start_of_frame 216, 218
send_block_() 265 start_of frame_ 216
send_message_() 230 StartupClass 159
send_one_operation() 133 state
separators 243 machine 34

310

space 29
variables 34
static methods 193, 194
Steve McGuire 6
stimulus 184
generators 159
stop bits 280
stop() 92, 159
stop_() 230
stop_generation() 105, 112, 122
string 19
Stuart Sutherland 21
style 242
sublanguage 16
sublayers 53
switch
statements 225
switches 124
synchronization 180
Synopsys 20
syntax 243
synthesizable subset 15
SystemC 20, 24
SystemC (C++) 12
system-level testbench 282
System-on-a-Chip 47, 154
SystemVerilog 11, 12, 20
SystemVerilog assertions 21
SystemVerilog for Verification
A Guide to Learning the Testbench Language
Features 20, 46

T
tap 268
tapeout 165
Teal 5,12, 13,69, 71, 90, 247
dictionary 133
library 90
memory functions 234
Teal messages
teal_debug 76
teal_error 76
teal_fatal 76
teal_info 76
teal::latch 215
teal::read() 275
teal::write() 262, 275
teal_debug 76
teal_error 76

A Practitioner’s Handbook

teal_fatal 76
TEAL_HOME 123
teal_info 76
teal_memory.svh 196
teal_vout.svh 196
team
dynamics 49, 162
environment 24
roles 162
style 243
teamwork 155
technical leader 162
tee 268
template 90, 92
templating 19, 220
temporal
locality 235
TEST 104
--test 124, 139
test 59, 60,91, 93,278
block 50
class 102
component 61, 62, 102, 270, 275
directed 94, 125
first 125
layer 51
parameters 77
quad_uart_irritators 286
quad_uart_test_components 284
quad_uart_vectors 292
uart_test_0 293
test.randomize() 96
test.sv 105, 141
test.svh 105
test::do_randomize() 118
test::out_of_reset() 118
test::start() 119
test::time_zero_setup() 118
test_base 105
test_component 91, 106, 109, 110, 119, 126, 131,
133, 250
test_name.sv 139
test_name.svh 139
testbench 6, 59, 60, 91, 93,94, 99, 118, 270
block 51
testbench.randomize() 96
testbench.sv 99, 141, 143, 250, 251
testbench.svh 99
testbench.v 140, 252

311

Index

testbench::do_randomize() 118
testbench::out_of_reset() 118
testbench::start() 119
testbench::time_zero_setup() 118
testbench_base 99
Testbuilder 20
The C++ Programming Language 188
the_protocol 170
thread 58, 107, 206
boundaries 207
thread-safe connection 207, 214
throttle mechanism 111
throttling 122, 287
tight connection 207
time 60
time_zero_setup() 96, 101, 104, 107, 118, 143
timeout 95,97, 109
Timothy Lister 171
TLAs 243
Tom DeMarco 171
Tony Hoare 188
toolsmith 162
top layer 58
top.v 43
traffic
generation 126
generators 94
trailing underscore 238, 244
tranif 186
transaction 53
layer 54,57
transactor 92, 94, 219
transmit side 267
transport layer 181
trap() 216
tricks 232
trigger 215
Truss 2,5, 31, 69, 89, 115, 122, 247
channel 127
directories 138
irritator 282, 286
run script 123
standard test algorithm 250
switches 124
truss 136
truss command 142
truss run script 123
truss::irritator 135, 286
truss::testbench_base 99

312

TRUSS_HOME 123, 255
truss_verification_top.sv 116
truss_vout.svh 96
type

checking 176
type_id 159
type_id==top 159
typename 241

U

UART

16550 251, 260

16550 RTL 250

16550 SFM 254, 283

BFM 253

code 251

interface 77

test 65

test component 66
uart_16550_bfm 261
uart_16550_bfm::write_to_hardware() 262
uart_basic_irritator 286, 288
uart_basic_test_component 286
uart_checker 213
uart_configuration.sv 259
uart_group 283
uart_interface 293
uart_irritators 286
uart_test_0 test 293
uart_top 252
uart_word::equal() 269
unbalanced connection 209
underscore 238, 243

methods 238

Universal Test and Operations Physical Interface for

ATM 210
unmatched writes 182
upper layer 56
USB 185

host interface 210
subsystem 161
user_main 105
utility class 259
UTOPIA interface 210

\

ves 123
Vera 5, 24, 30, 32

verification
functional 3
languages (compared) 11
top 58,93
top block 50
Verification Intellectual Property (VIP) 1, 139, 163,
164, 241, 247, 253, 258
verification top 186
verification_base 38, 39
verification_component 91, 92, 97, 201
verification_top() 82, 91,93, 104, 116, 119
verification_top.sv 116, 141
Verilog 11, 12, 20, 29, 30, 47
Verilog language 168
VHDL 11, 12, 20, 29, 30, 47, 168
virtual
base class 28, 37, 106
function 38, 192, 229, 238
interface 13
keyword 38
method 38
protected method 238
pure virtual 38
virtualization 28
vlog 75, 196
class 72
vout 74
class 72
vrandom 84, 85
class 73
Vroomfondel 173

w

wait and signal 214

wait for trigger 144

wait() 216

wait_for 216

wait_for_completion() 97, 104, 105, 109, 119, 126,
142, 147, 148, 269, 291

wait_for_completion_() 109, 127

wait_for_start_of_frame() 216

war (religious) 242

A Practitioner’s Handbook

watchdog timer 51, 59, 91, 93, 94, 101, 118, 228
wb_mast 264
Whew! 149
whiteboard 5, 49, 50, 52, 174

verification system 48
wild equality 19
Winnie-the-Pooh 295
wire 53
wishbone

BFM 254

driver 252, 264, 283

interface 251, 254, 263

objects 274

protocol 261
wishbone_driver 275
wishbone_memory_bank 275
work_done 254
wrapping 179
write() 80, 194, 262
write_to_hardware() 96, 107, 119, 261
writes

overlapped memory 183
write-to-hardware phase 261
Writing Solid Code 6
Writing Testbenches: Functional Verification of

HDL Models 6
www.asic-world.com 46
www.doulos.com 46
www.opencores.org 251
www.trusster.com 2
www.verificationguild.com 15

X
XON/XOFF processing 213

Y

your_test_component::generate_() 126

Z
ZBT RAM 166
Zero-bus turnaround 166

313

	cover-image-large.jpg
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	front-matter_002.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	front-matter_003.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	front-matter_004.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	back-matter.pdf

